On the isomorphism class of $q$-Gaussian W$^\ast$-algebras for infinite variables Article Swipe
Related Concepts
Isomorphism (crystallography)
Separable space
Hilbert space
Mathematics
Von Neumann algebra
Space (punctuation)
Algebraic number
Combinatorics
Class (philosophy)
Von Neumann architecture
Pure mathematics
Algebra over a field
Mathematical analysis
Crystallography
Computer science
Philosophy
Crystal structure
Linguistics
Chemistry
Artificial intelligence
Martijn Caspers
·
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2210.11128
· OA: W4307077430
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2210.11128
· OA: W4307077430
Let $M_q(H_{\mathbb{R}})$ be the $q$-Gaussian von Neumann algebra associated with a separable infinite dimensional real Hilbert space $H_{\mathbb{R}}$ where $-1 < q < 1$. We show that $M_q(H_{\mathbb{R}}) \not \simeq M_0(H_{\mathbb{R}})$ for $-1 < q \not = 0 < 1$. The C$^\ast$-algebraic counterpart of this result was obtained recently in [BCKW22]. Using ideas of Ozawa we show that this non-isomorphism result also holds on the level of von Neumann algebras.
Related Topics
Finding more related topics…