On the ‘optimal’ density power divergence tuning parameter Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.1080/02664763.2020.1736524
The density power divergence, indexed by a single tuning parameter α, has proved to be a very useful tool in minimum distance inference. The family of density power divergences provides a generalized estimation scheme which includes likelihood-based procedures (represented by choice α=0 for the tuning parameter) as a special case. However, under data contamination, this scheme provides several more stable choices for model fitting and analysis (provided by positive values for the tuning parameter α). As larger values of α necessarily lead to a drop in model efficiency, determining the optimal value of α to provide the best compromise between model-efficiency and stability against data contamination in any real situation is a major challenge. In this paper, we provide a refinement of an existing technique with the aim of eliminating the dependence of the procedure on an initial pilot estimator. Numerical evidence is provided to demonstrate the very good performance of the method. Our technique has a general flavour, and we expect that similar tuning parameter selection algorithms will work well for other M-estimators, or any robust procedure that depends on the choice of a tuning parameter.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1080/02664763.2020.1736524
- OA Status
- green
- Cited By
- 64
- References
- 16
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3010902293
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3010902293Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1080/02664763.2020.1736524Digital Object Identifier
- Title
-
On the ‘optimal’ density power divergence tuning parameterWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-03-13Full publication date if available
- Authors
-
Sancharee Basak, Ayanendranath Basu, M. C. JonesList of authors in order
- Landing page
-
https://doi.org/10.1080/02664763.2020.1736524Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://figshare.com/articles/On_the_optimal_density_power_divergence_tuning_parameter/11985192Direct OA link when available
- Concepts
-
Estimator, Divergence (linguistics), Mathematical optimization, Estimation theory, Inference, Computer science, Parameter space, Stability (learning theory), Mathematics, Applied mathematics, Algorithm, Statistics, Linguistics, Artificial intelligence, Machine learning, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
64Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 11, 2024: 15, 2023: 14, 2022: 10, 2021: 6Per-year citation counts (last 5 years)
- References (count)
-
16Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3010902293 |
|---|---|
| doi | https://doi.org/10.1080/02664763.2020.1736524 |
| ids.doi | https://doi.org/10.6084/m9.figshare.11985192.v1 |
| ids.mag | 3010902293 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/35706540 |
| ids.openalex | https://openalex.org/W3010902293 |
| fwci | 9.09948152 |
| type | article |
| title | On the ‘optimal’ density power divergence tuning parameter |
| biblio.issue | 3 |
| biblio.volume | 48 |
| biblio.last_page | 556 |
| biblio.first_page | 536 |
| topics[0].id | https://openalex.org/T11871 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9995999932289124 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2613 |
| topics[0].subfield.display_name | Statistics and Probability |
| topics[0].display_name | Advanced Statistical Methods and Models |
| topics[1].id | https://openalex.org/T10136 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.9918000102043152 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2613 |
| topics[1].subfield.display_name | Statistics and Probability |
| topics[1].display_name | Statistical Methods and Inference |
| topics[2].id | https://openalex.org/T13487 |
| topics[2].field.id | https://openalex.org/fields/26 |
| topics[2].field.display_name | Mathematics |
| topics[2].score | 0.964900016784668 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2604 |
| topics[2].subfield.display_name | Applied Mathematics |
| topics[2].display_name | Statistical and numerical algorithms |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C185429906 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7387327551841736 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1130160 |
| concepts[0].display_name | Estimator |
| concepts[1].id | https://openalex.org/C207390915 |
| concepts[1].level | 2 |
| concepts[1].score | 0.654906153678894 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1230525 |
| concepts[1].display_name | Divergence (linguistics) |
| concepts[2].id | https://openalex.org/C126255220 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5266083478927612 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[2].display_name | Mathematical optimization |
| concepts[3].id | https://openalex.org/C167928553 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5199698209762573 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1376021 |
| concepts[3].display_name | Estimation theory |
| concepts[4].id | https://openalex.org/C2776214188 |
| concepts[4].level | 2 |
| concepts[4].score | 0.47265851497650146 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[4].display_name | Inference |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.47066032886505127 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C73586568 |
| concepts[6].level | 2 |
| concepts[6].score | 0.45929402112960815 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2600211 |
| concepts[6].display_name | Parameter space |
| concepts[7].id | https://openalex.org/C112972136 |
| concepts[7].level | 2 |
| concepts[7].score | 0.43915697932243347 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7595718 |
| concepts[7].display_name | Stability (learning theory) |
| concepts[8].id | https://openalex.org/C33923547 |
| concepts[8].level | 0 |
| concepts[8].score | 0.4316861927509308 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[8].display_name | Mathematics |
| concepts[9].id | https://openalex.org/C28826006 |
| concepts[9].level | 1 |
| concepts[9].score | 0.42249906063079834 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q33521 |
| concepts[9].display_name | Applied mathematics |
| concepts[10].id | https://openalex.org/C11413529 |
| concepts[10].level | 1 |
| concepts[10].score | 0.2954031825065613 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[10].display_name | Algorithm |
| concepts[11].id | https://openalex.org/C105795698 |
| concepts[11].level | 1 |
| concepts[11].score | 0.2600865364074707 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[11].display_name | Statistics |
| concepts[12].id | https://openalex.org/C41895202 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[12].display_name | Linguistics |
| concepts[13].id | https://openalex.org/C154945302 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[13].display_name | Artificial intelligence |
| concepts[14].id | https://openalex.org/C119857082 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[14].display_name | Machine learning |
| concepts[15].id | https://openalex.org/C138885662 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[15].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/estimator |
| keywords[0].score | 0.7387327551841736 |
| keywords[0].display_name | Estimator |
| keywords[1].id | https://openalex.org/keywords/divergence |
| keywords[1].score | 0.654906153678894 |
| keywords[1].display_name | Divergence (linguistics) |
| keywords[2].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[2].score | 0.5266083478927612 |
| keywords[2].display_name | Mathematical optimization |
| keywords[3].id | https://openalex.org/keywords/estimation-theory |
| keywords[3].score | 0.5199698209762573 |
| keywords[3].display_name | Estimation theory |
| keywords[4].id | https://openalex.org/keywords/inference |
| keywords[4].score | 0.47265851497650146 |
| keywords[4].display_name | Inference |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.47066032886505127 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/parameter-space |
| keywords[6].score | 0.45929402112960815 |
| keywords[6].display_name | Parameter space |
| keywords[7].id | https://openalex.org/keywords/stability |
| keywords[7].score | 0.43915697932243347 |
| keywords[7].display_name | Stability (learning theory) |
| keywords[8].id | https://openalex.org/keywords/mathematics |
| keywords[8].score | 0.4316861927509308 |
| keywords[8].display_name | Mathematics |
| keywords[9].id | https://openalex.org/keywords/applied-mathematics |
| keywords[9].score | 0.42249906063079834 |
| keywords[9].display_name | Applied mathematics |
| keywords[10].id | https://openalex.org/keywords/algorithm |
| keywords[10].score | 0.2954031825065613 |
| keywords[10].display_name | Algorithm |
| keywords[11].id | https://openalex.org/keywords/statistics |
| keywords[11].score | 0.2600865364074707 |
| keywords[11].display_name | Statistics |
| language | en |
| locations[0].id | doi:10.1080/02664763.2020.1736524 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S167117542 |
| locations[0].source.issn | 0266-4763, 1360-0532 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0266-4763 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of Applied Statistics |
| locations[0].source.host_organization | https://openalex.org/P4310320547 |
| locations[0].source.host_organization_name | Taylor & Francis |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320547 |
| locations[0].source.host_organization_lineage_names | Taylor & Francis |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Applied Statistics |
| locations[0].landing_page_url | https://doi.org/10.1080/02664763.2020.1736524 |
| locations[1].id | pmid:35706540 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Journal of applied statistics |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/35706540 |
| locations[2].id | pmh:oai:figshare.com:article/11985192 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400572 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | OPAL (Open@LaTrobe) (La Trobe University) |
| locations[2].source.host_organization | https://openalex.org/I196829312 |
| locations[2].source.host_organization_name | La Trobe University |
| locations[2].source.host_organization_lineage | https://openalex.org/I196829312 |
| locations[2].license | cc-by |
| locations[2].pdf_url | https://figshare.com/articles/On_the_optimal_density_power_divergence_tuning_parameter/11985192 |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://figshare.com/articles/journal_contribution/On_the_optimal_density_power_divergence_tuning_parameter/11985192 |
| locations[3].id | pmh:oai:oro.open.ac.uk:69899 |
| locations[3].is_oa | False |
| locations[3].source.id | https://openalex.org/S4306401187 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | Open Research Online (The Open University) |
| locations[3].source.host_organization | https://openalex.org/I204136569 |
| locations[3].source.host_organization_name | The Open University |
| locations[3].source.host_organization_lineage | https://openalex.org/I204136569 |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Journal Item |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://oro.open.ac.uk/69899/ |
| locations[4].id | pmh:oai:pubmedcentral.nih.gov:9042124 |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S2764455111 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | False |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | PubMed Central |
| locations[4].source.host_organization | https://openalex.org/I1299303238 |
| locations[4].source.host_organization_name | National Institutes of Health |
| locations[4].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[4].license | |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | Text |
| locations[4].license_id | |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | J Appl Stat |
| locations[4].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/9042124 |
| locations[5].id | doi:10.6084/m9.figshare.11985192.v1 |
| locations[5].is_oa | True |
| locations[5].source | |
| locations[5].license | cc-by |
| locations[5].pdf_url | |
| locations[5].version | |
| locations[5].raw_type | article-journal |
| locations[5].license_id | https://openalex.org/licenses/cc-by |
| locations[5].is_accepted | False |
| locations[5].is_published | |
| locations[5].raw_source_name | |
| locations[5].landing_page_url | https://doi.org/10.6084/m9.figshare.11985192.v1 |
| indexed_in | crossref, datacite, pubmed |
| authorships[0].author.id | https://openalex.org/A5066767992 |
| authorships[0].author.orcid | https://orcid.org/0009-0001-4610-0002 |
| authorships[0].author.display_name | Sancharee Basak |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I6498739 |
| authorships[0].affiliations[0].raw_affiliation_string | Interdisciplinary Statistical Research Unit, Indian Statistical Institute, Kolkata India |
| authorships[0].institutions[0].id | https://openalex.org/I6498739 |
| authorships[0].institutions[0].ror | https://ror.org/00q2w1j53 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I6498739 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | Indian Statistical Institute |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Sancharee Basak |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Interdisciplinary Statistical Research Unit, Indian Statistical Institute, Kolkata India |
| authorships[1].author.id | https://openalex.org/A5075590161 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1416-9109 |
| authorships[1].author.display_name | Ayanendranath Basu |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I6498739 |
| authorships[1].affiliations[0].raw_affiliation_string | Interdisciplinary Statistical Research Unit, Indian Statistical Institute, Kolkata India |
| authorships[1].institutions[0].id | https://openalex.org/I6498739 |
| authorships[1].institutions[0].ror | https://ror.org/00q2w1j53 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I6498739 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Indian Statistical Institute |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ayanendranath Basu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Interdisciplinary Statistical Research Unit, Indian Statistical Institute, Kolkata India |
| authorships[2].author.id | https://openalex.org/A5086403506 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6914-0675 |
| authorships[2].author.display_name | M. C. Jones |
| authorships[2].countries | GB |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I204136569 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Mathematics and Statistics, The Open University, Milton Keynes, UK |
| authorships[2].institutions[0].id | https://openalex.org/I204136569 |
| authorships[2].institutions[0].ror | https://ror.org/05mzfcs16 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I204136569 |
| authorships[2].institutions[0].country_code | GB |
| authorships[2].institutions[0].display_name | The Open University |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | M. C. Jones |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Mathematics and Statistics, The Open University, Milton Keynes, UK |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://figshare.com/articles/On_the_optimal_density_power_divergence_tuning_parameter/11985192 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | On the ‘optimal’ density power divergence tuning parameter |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11871 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9995999932289124 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2613 |
| primary_topic.subfield.display_name | Statistics and Probability |
| primary_topic.display_name | Advanced Statistical Methods and Models |
| related_works | https://openalex.org/W1998254728, https://openalex.org/W2077038896, https://openalex.org/W2069805373, https://openalex.org/W2810607982, https://openalex.org/W1987771408, https://openalex.org/W2042934151, https://openalex.org/W2905630886, https://openalex.org/W2023661646, https://openalex.org/W2066489961, https://openalex.org/W2087158431 |
| cited_by_count | 64 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 11 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 15 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 14 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 10 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 6 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 7 |
| counts_by_year[6].year | 2019 |
| counts_by_year[6].cited_by_count | 1 |
| locations_count | 6 |
| best_oa_location.id | pmh:oai:figshare.com:article/11985192 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400572 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | OPAL (Open@LaTrobe) (La Trobe University) |
| best_oa_location.source.host_organization | https://openalex.org/I196829312 |
| best_oa_location.source.host_organization_name | La Trobe University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I196829312 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://figshare.com/articles/On_the_optimal_density_power_divergence_tuning_parameter/11985192 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | Text |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://figshare.com/articles/journal_contribution/On_the_optimal_density_power_divergence_tuning_parameter/11985192 |
| primary_location.id | doi:10.1080/02664763.2020.1736524 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S167117542 |
| primary_location.source.issn | 0266-4763, 1360-0532 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0266-4763 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of Applied Statistics |
| primary_location.source.host_organization | https://openalex.org/P4310320547 |
| primary_location.source.host_organization_name | Taylor & Francis |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320547 |
| primary_location.source.host_organization_lineage_names | Taylor & Francis |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Applied Statistics |
| primary_location.landing_page_url | https://doi.org/10.1080/02664763.2020.1736524 |
| publication_date | 2020-03-13 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2117890631, https://openalex.org/W4210855551, https://openalex.org/W2081821624, https://openalex.org/W2032576213, https://openalex.org/W2048766146, https://openalex.org/W2027847933, https://openalex.org/W2490166567, https://openalex.org/W2600575985, https://openalex.org/W2498631646, https://openalex.org/W2050608180, https://openalex.org/W2092459737, https://openalex.org/W2145262637, https://openalex.org/W2090929462, https://openalex.org/W2122358268, https://openalex.org/W2076330857, https://openalex.org/W2127332440 |
| referenced_works_count | 16 |
| abstract_inverted_index.a | 6, 15, 30, 47, 83, 111, 119, 156, 184 |
| abstract_inverted_index.As | 75 |
| abstract_inverted_index.In | 114 |
| abstract_inverted_index.an | 122, 136 |
| abstract_inverted_index.as | 46 |
| abstract_inverted_index.be | 14 |
| abstract_inverted_index.by | 5, 39, 67 |
| abstract_inverted_index.in | 19, 85, 106 |
| abstract_inverted_index.is | 110, 142 |
| abstract_inverted_index.of | 25, 78, 92, 121, 128, 132, 150, 183 |
| abstract_inverted_index.on | 135, 180 |
| abstract_inverted_index.or | 174 |
| abstract_inverted_index.to | 13, 82, 94, 144 |
| abstract_inverted_index.we | 117, 160 |
| abstract_inverted_index.Our | 153 |
| abstract_inverted_index.The | 0, 23 |
| abstract_inverted_index.aim | 127 |
| abstract_inverted_index.and | 64, 101, 159 |
| abstract_inverted_index.any | 107, 175 |
| abstract_inverted_index.for | 42, 61, 70, 171 |
| abstract_inverted_index.has | 11, 155 |
| abstract_inverted_index.the | 43, 71, 89, 96, 126, 130, 133, 146, 151, 181 |
| abstract_inverted_index.best | 97 |
| abstract_inverted_index.data | 52, 104 |
| abstract_inverted_index.drop | 84 |
| abstract_inverted_index.good | 148 |
| abstract_inverted_index.lead | 81 |
| abstract_inverted_index.more | 58 |
| abstract_inverted_index.real | 108 |
| abstract_inverted_index.that | 162, 178 |
| abstract_inverted_index.this | 54, 115 |
| abstract_inverted_index.tool | 18 |
| abstract_inverted_index.very | 16, 147 |
| abstract_inverted_index.well | 170 |
| abstract_inverted_index.will | 168 |
| abstract_inverted_index.with | 125 |
| abstract_inverted_index.work | 169 |
| abstract_inverted_index.α=0 | 41 |
| abstract_inverted_index.case. | 49 |
| abstract_inverted_index.major | 112 |
| abstract_inverted_index.model | 62, 86 |
| abstract_inverted_index.other | 172 |
| abstract_inverted_index.pilot | 138 |
| abstract_inverted_index.power | 2, 27 |
| abstract_inverted_index.under | 51 |
| abstract_inverted_index.value | 91 |
| abstract_inverted_index.which | 34 |
| abstract_inverted_index.choice | 40, 182 |
| abstract_inverted_index.expect | 161 |
| abstract_inverted_index.family | 24 |
| abstract_inverted_index.larger | 76 |
| abstract_inverted_index.paper, | 116 |
| abstract_inverted_index.proved | 12 |
| abstract_inverted_index.robust | 176 |
| abstract_inverted_index.scheme | 33, 55 |
| abstract_inverted_index.single | 7 |
| abstract_inverted_index.stable | 59 |
| abstract_inverted_index.tuning | 8, 44, 72, 164, 185 |
| abstract_inverted_index.useful | 17 |
| abstract_inverted_index.values | 69, 77 |
| abstract_inverted_index.against | 103 |
| abstract_inverted_index.between | 99 |
| abstract_inverted_index.choices | 60 |
| abstract_inverted_index.density | 1, 26 |
| abstract_inverted_index.depends | 179 |
| abstract_inverted_index.fitting | 63 |
| abstract_inverted_index.general | 157 |
| abstract_inverted_index.indexed | 4 |
| abstract_inverted_index.initial | 137 |
| abstract_inverted_index.method. | 152 |
| abstract_inverted_index.minimum | 20 |
| abstract_inverted_index.optimal | 90 |
| abstract_inverted_index.provide | 95, 118 |
| abstract_inverted_index.several | 57 |
| abstract_inverted_index.similar | 163 |
| abstract_inverted_index.special | 48 |
| abstract_inverted_index.However, | 50 |
| abstract_inverted_index.analysis | 65 |
| abstract_inverted_index.distance | 21 |
| abstract_inverted_index.evidence | 141 |
| abstract_inverted_index.existing | 123 |
| abstract_inverted_index.flavour, | 158 |
| abstract_inverted_index.includes | 35 |
| abstract_inverted_index.positive | 68 |
| abstract_inverted_index.provided | 143 |
| abstract_inverted_index.provides | 29, 56 |
| abstract_inverted_index.(provided | 66 |
| abstract_inverted_index.<i>α</i> | 79, 93 |
| abstract_inverted_index.Numerical | 140 |
| abstract_inverted_index.parameter | 9, 73, 165 |
| abstract_inverted_index.procedure | 134, 177 |
| abstract_inverted_index.selection | 166 |
| abstract_inverted_index.situation | 109 |
| abstract_inverted_index.stability | 102 |
| abstract_inverted_index.technique | 124, 154 |
| abstract_inverted_index.<i>α</i>, | 10 |
| abstract_inverted_index.algorithms | 167 |
| abstract_inverted_index.challenge. | 113 |
| abstract_inverted_index.compromise | 98 |
| abstract_inverted_index.dependence | 131 |
| abstract_inverted_index.estimation | 32 |
| abstract_inverted_index.estimator. | 139 |
| abstract_inverted_index.inference. | 22 |
| abstract_inverted_index.parameter) | 45 |
| abstract_inverted_index.parameter. | 186 |
| abstract_inverted_index.procedures | 37 |
| abstract_inverted_index.refinement | 120 |
| abstract_inverted_index.<i>α</i>). | 74 |
| abstract_inverted_index.demonstrate | 145 |
| abstract_inverted_index.determining | 88 |
| abstract_inverted_index.divergence, | 3 |
| abstract_inverted_index.divergences | 28 |
| abstract_inverted_index.efficiency, | 87 |
| abstract_inverted_index.eliminating | 129 |
| abstract_inverted_index.generalized | 31 |
| abstract_inverted_index.necessarily | 80 |
| abstract_inverted_index.performance | 149 |
| abstract_inverted_index.(represented | 38 |
| abstract_inverted_index.M-estimators, | 173 |
| abstract_inverted_index.contamination | 105 |
| abstract_inverted_index.contamination, | 53 |
| abstract_inverted_index.likelihood-based | 36 |
| abstract_inverted_index.model-efficiency | 100 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 90 |
| corresponding_author_ids | https://openalex.org/A5066767992 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 3 |
| corresponding_institution_ids | https://openalex.org/I6498739 |
| citation_normalized_percentile.value | 0.98349422 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |