On the Performance Analysis of Momentum Method: A Frequency Domain Perspective Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2411.19671
Momentum-based optimizers are widely adopted for training neural networks. However, the optimal selection of momentum coefficients remains elusive. This uncertainty impedes a clear understanding of the role of momentum in stochastic gradient methods. In this paper, we present a frequency domain analysis framework that interprets the momentum method as a time-variant filter for gradients, where adjustments to momentum coefficients modify the filter characteristics. Our experiments support this perspective and provide a deeper understanding of the mechanism involved. Moreover, our analysis reveals the following significant findings: high-frequency gradient components are undesired in the late stages of training; preserving the original gradient in the early stages, and gradually amplifying low-frequency gradient components during training both enhance performance. Based on these insights, we propose Frequency Stochastic Gradient Descent with Momentum (FSGDM), a heuristic optimizer that dynamically adjusts the momentum filtering characteristic with an empirically effective dynamic magnitude response. Experimental results demonstrate the superiority of FSGDM over conventional momentum optimizers.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2411.19671
- https://arxiv.org/pdf/2411.19671
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4405031404
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4405031404Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2411.19671Digital Object Identifier
- Title
-
On the Performance Analysis of Momentum Method: A Frequency Domain PerspectiveWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-11-29Full publication date if available
- Authors
-
Xianliang Li, Jun Luo, Zhiwei Zheng, Hanxiao Wang, Luo Li, Li Wen, Linlong Wu, Sheng XuList of authors in order
- Landing page
-
https://arxiv.org/abs/2411.19671Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2411.19671Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2411.19671Direct OA link when available
- Concepts
-
Perspective (graphical), Frequency domain, Momentum (technical analysis), Domain (mathematical analysis), Physics, Computer science, Mathematics, Economics, Mathematical analysis, Financial economics, Artificial intelligenceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4405031404 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2411.19671 |
| ids.doi | https://doi.org/10.48550/arxiv.2411.19671 |
| ids.openalex | https://openalex.org/W4405031404 |
| fwci | |
| type | preprint |
| title | On the Performance Analysis of Momentum Method: A Frequency Domain Perspective |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11234 |
| topics[0].field.id | https://openalex.org/fields/19 |
| topics[0].field.display_name | Earth and Planetary Sciences |
| topics[0].score | 0.92330002784729 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1902 |
| topics[0].subfield.display_name | Atmospheric Science |
| topics[0].display_name | Precipitation Measurement and Analysis |
| topics[1].id | https://openalex.org/T13121 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.911300003528595 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2202 |
| topics[1].subfield.display_name | Aerospace Engineering |
| topics[1].display_name | Radio Wave Propagation Studies |
| topics[2].id | https://openalex.org/T11312 |
| topics[2].field.id | https://openalex.org/fields/23 |
| topics[2].field.display_name | Environmental Science |
| topics[2].score | 0.9086999893188477 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2305 |
| topics[2].subfield.display_name | Environmental Engineering |
| topics[2].display_name | Soil Moisture and Remote Sensing |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C12713177 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7886307239532471 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1900281 |
| concepts[0].display_name | Perspective (graphical) |
| concepts[1].id | https://openalex.org/C19118579 |
| concepts[1].level | 2 |
| concepts[1].score | 0.587531566619873 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q786423 |
| concepts[1].display_name | Frequency domain |
| concepts[2].id | https://openalex.org/C60718061 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5798393487930298 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1414747 |
| concepts[2].display_name | Momentum (technical analysis) |
| concepts[3].id | https://openalex.org/C36503486 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4391346871852875 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11235244 |
| concepts[3].display_name | Domain (mathematical analysis) |
| concepts[4].id | https://openalex.org/C121332964 |
| concepts[4].level | 0 |
| concepts[4].score | 0.37395018339157104 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[4].display_name | Physics |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.34848207235336304 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C33923547 |
| concepts[6].level | 0 |
| concepts[6].score | 0.29423972964286804 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[6].display_name | Mathematics |
| concepts[7].id | https://openalex.org/C162324750 |
| concepts[7].level | 0 |
| concepts[7].score | 0.24739018082618713 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[7].display_name | Economics |
| concepts[8].id | https://openalex.org/C134306372 |
| concepts[8].level | 1 |
| concepts[8].score | 0.18825870752334595 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[8].display_name | Mathematical analysis |
| concepts[9].id | https://openalex.org/C106159729 |
| concepts[9].level | 1 |
| concepts[9].score | 0.12346208095550537 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2294553 |
| concepts[9].display_name | Financial economics |
| concepts[10].id | https://openalex.org/C154945302 |
| concepts[10].level | 1 |
| concepts[10].score | 0.12305048108100891 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[10].display_name | Artificial intelligence |
| keywords[0].id | https://openalex.org/keywords/perspective |
| keywords[0].score | 0.7886307239532471 |
| keywords[0].display_name | Perspective (graphical) |
| keywords[1].id | https://openalex.org/keywords/frequency-domain |
| keywords[1].score | 0.587531566619873 |
| keywords[1].display_name | Frequency domain |
| keywords[2].id | https://openalex.org/keywords/momentum |
| keywords[2].score | 0.5798393487930298 |
| keywords[2].display_name | Momentum (technical analysis) |
| keywords[3].id | https://openalex.org/keywords/domain |
| keywords[3].score | 0.4391346871852875 |
| keywords[3].display_name | Domain (mathematical analysis) |
| keywords[4].id | https://openalex.org/keywords/physics |
| keywords[4].score | 0.37395018339157104 |
| keywords[4].display_name | Physics |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.34848207235336304 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/mathematics |
| keywords[6].score | 0.29423972964286804 |
| keywords[6].display_name | Mathematics |
| keywords[7].id | https://openalex.org/keywords/economics |
| keywords[7].score | 0.24739018082618713 |
| keywords[7].display_name | Economics |
| keywords[8].id | https://openalex.org/keywords/mathematical-analysis |
| keywords[8].score | 0.18825870752334595 |
| keywords[8].display_name | Mathematical analysis |
| keywords[9].id | https://openalex.org/keywords/financial-economics |
| keywords[9].score | 0.12346208095550537 |
| keywords[9].display_name | Financial economics |
| keywords[10].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[10].score | 0.12305048108100891 |
| keywords[10].display_name | Artificial intelligence |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2411.19671 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2411.19671 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2411.19671 |
| locations[1].id | doi:10.48550/arxiv.2411.19671 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2411.19671 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5101803969 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6821-146X |
| authorships[0].author.display_name | Xianliang Li |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Li, Xianliang |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100749903 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5122-6806 |
| authorships[1].author.display_name | Jun Luo |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Luo, Jun |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5107959210 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Zhiwei Zheng |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zheng, Zhiwei |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5101454802 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-2439-1280 |
| authorships[3].author.display_name | Hanxiao Wang |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Wang, Hanxiao |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5044203085 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-9920-7794 |
| authorships[4].author.display_name | Luo Li |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Luo, Li |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5101413488 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-0197-3432 |
| authorships[5].author.display_name | Li Wen |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Wen, Lingkun |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5037131275 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-4521-2026 |
| authorships[6].author.display_name | Linlong Wu |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Wu, Linlong |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5012441448 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-0584-3096 |
| authorships[7].author.display_name | Sheng Xu |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Xu, Sheng |
| authorships[7].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2411.19671 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | On the Performance Analysis of Momentum Method: A Frequency Domain Perspective |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11234 |
| primary_topic.field.id | https://openalex.org/fields/19 |
| primary_topic.field.display_name | Earth and Planetary Sciences |
| primary_topic.score | 0.92330002784729 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1902 |
| primary_topic.subfield.display_name | Atmospheric Science |
| primary_topic.display_name | Precipitation Measurement and Analysis |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2935759653, https://openalex.org/W3105167352, https://openalex.org/W54078636, https://openalex.org/W2954470139, https://openalex.org/W1501425562, https://openalex.org/W2902782467, https://openalex.org/W3084825885, https://openalex.org/W2298861036 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2411.19671 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2411.19671 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2411.19671 |
| primary_location.id | pmh:oai:arXiv.org:2411.19671 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2411.19671 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2411.19671 |
| publication_date | 2024-11-29 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 21, 38, 49, 70, 128 |
| abstract_inverted_index.In | 33 |
| abstract_inverted_index.an | 139 |
| abstract_inverted_index.as | 48 |
| abstract_inverted_index.in | 29, 90, 100 |
| abstract_inverted_index.of | 13, 24, 27, 73, 94, 150 |
| abstract_inverted_index.on | 116 |
| abstract_inverted_index.to | 56 |
| abstract_inverted_index.we | 36, 119 |
| abstract_inverted_index.Our | 63 |
| abstract_inverted_index.and | 68, 104 |
| abstract_inverted_index.are | 2, 88 |
| abstract_inverted_index.for | 5, 52 |
| abstract_inverted_index.our | 78 |
| abstract_inverted_index.the | 10, 25, 45, 60, 74, 81, 91, 97, 101, 134, 148 |
| abstract_inverted_index.This | 18 |
| abstract_inverted_index.both | 112 |
| abstract_inverted_index.late | 92 |
| abstract_inverted_index.over | 152 |
| abstract_inverted_index.role | 26 |
| abstract_inverted_index.that | 43, 131 |
| abstract_inverted_index.this | 34, 66 |
| abstract_inverted_index.with | 125, 138 |
| abstract_inverted_index.Based | 115 |
| abstract_inverted_index.FSGDM | 151 |
| abstract_inverted_index.clear | 22 |
| abstract_inverted_index.early | 102 |
| abstract_inverted_index.these | 117 |
| abstract_inverted_index.where | 54 |
| abstract_inverted_index.deeper | 71 |
| abstract_inverted_index.domain | 40 |
| abstract_inverted_index.during | 110 |
| abstract_inverted_index.filter | 51, 61 |
| abstract_inverted_index.method | 47 |
| abstract_inverted_index.modify | 59 |
| abstract_inverted_index.neural | 7 |
| abstract_inverted_index.paper, | 35 |
| abstract_inverted_index.stages | 93 |
| abstract_inverted_index.widely | 3 |
| abstract_inverted_index.Descent | 124 |
| abstract_inverted_index.adjusts | 133 |
| abstract_inverted_index.adopted | 4 |
| abstract_inverted_index.dynamic | 142 |
| abstract_inverted_index.enhance | 113 |
| abstract_inverted_index.impedes | 20 |
| abstract_inverted_index.optimal | 11 |
| abstract_inverted_index.present | 37 |
| abstract_inverted_index.propose | 120 |
| abstract_inverted_index.provide | 69 |
| abstract_inverted_index.remains | 16 |
| abstract_inverted_index.results | 146 |
| abstract_inverted_index.reveals | 80 |
| abstract_inverted_index.stages, | 103 |
| abstract_inverted_index.support | 65 |
| abstract_inverted_index.(FSGDM), | 127 |
| abstract_inverted_index.Gradient | 123 |
| abstract_inverted_index.However, | 9 |
| abstract_inverted_index.Momentum | 126 |
| abstract_inverted_index.analysis | 41, 79 |
| abstract_inverted_index.elusive. | 17 |
| abstract_inverted_index.gradient | 31, 86, 99, 108 |
| abstract_inverted_index.methods. | 32 |
| abstract_inverted_index.momentum | 14, 28, 46, 57, 135, 154 |
| abstract_inverted_index.original | 98 |
| abstract_inverted_index.training | 6, 111 |
| abstract_inverted_index.Frequency | 121 |
| abstract_inverted_index.Moreover, | 77 |
| abstract_inverted_index.effective | 141 |
| abstract_inverted_index.filtering | 136 |
| abstract_inverted_index.findings: | 84 |
| abstract_inverted_index.following | 82 |
| abstract_inverted_index.framework | 42 |
| abstract_inverted_index.frequency | 39 |
| abstract_inverted_index.gradually | 105 |
| abstract_inverted_index.heuristic | 129 |
| abstract_inverted_index.insights, | 118 |
| abstract_inverted_index.involved. | 76 |
| abstract_inverted_index.magnitude | 143 |
| abstract_inverted_index.mechanism | 75 |
| abstract_inverted_index.networks. | 8 |
| abstract_inverted_index.optimizer | 130 |
| abstract_inverted_index.response. | 144 |
| abstract_inverted_index.selection | 12 |
| abstract_inverted_index.training; | 95 |
| abstract_inverted_index.undesired | 89 |
| abstract_inverted_index.Stochastic | 122 |
| abstract_inverted_index.amplifying | 106 |
| abstract_inverted_index.components | 87, 109 |
| abstract_inverted_index.gradients, | 53 |
| abstract_inverted_index.interprets | 44 |
| abstract_inverted_index.optimizers | 1 |
| abstract_inverted_index.preserving | 96 |
| abstract_inverted_index.stochastic | 30 |
| abstract_inverted_index.adjustments | 55 |
| abstract_inverted_index.demonstrate | 147 |
| abstract_inverted_index.dynamically | 132 |
| abstract_inverted_index.empirically | 140 |
| abstract_inverted_index.experiments | 64 |
| abstract_inverted_index.optimizers. | 155 |
| abstract_inverted_index.perspective | 67 |
| abstract_inverted_index.significant | 83 |
| abstract_inverted_index.superiority | 149 |
| abstract_inverted_index.uncertainty | 19 |
| abstract_inverted_index.Experimental | 145 |
| abstract_inverted_index.coefficients | 15, 58 |
| abstract_inverted_index.conventional | 153 |
| abstract_inverted_index.performance. | 114 |
| abstract_inverted_index.time-variant | 50 |
| abstract_inverted_index.low-frequency | 107 |
| abstract_inverted_index.understanding | 23, 72 |
| abstract_inverted_index.Momentum-based | 0 |
| abstract_inverted_index.characteristic | 137 |
| abstract_inverted_index.high-frequency | 85 |
| abstract_inverted_index.characteristics. | 62 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 8 |
| citation_normalized_percentile |