On the redundancy in large material datasets: efficient and robust learning with less data Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2304.13076
Extensive efforts to gather materials data have largely overlooked potential data redundancy. In this study, we present evidence of a significant degree of redundancy across multiple large datasets for various material properties, by revealing that up to 95 % of data can be safely removed from machine learning training with little impact on in-distribution prediction performance. The redundant data is related to over-represented material types and does not mitigate the severe performance degradation on out-of-distribution samples. In addition, we show that uncertainty-based active learning algorithms can construct much smaller but equally informative datasets. We discuss the effectiveness of informative data in improving prediction performance and robustness and provide insights into efficient data acquisition and machine learning training. This work challenges the "bigger is better" mentality and calls for attention to the information richness of materials data rather than a narrow emphasis on data volume.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2304.13076
- https://arxiv.org/pdf/2304.13076
- OA Status
- green
- Cited By
- 6
- References
- 45
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4367189432
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4367189432Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2304.13076Digital Object Identifier
- Title
-
On the redundancy in large material datasets: efficient and robust learning with less dataWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-04-25Full publication date if available
- Authors
-
Kangming Li, Daniel Persaud, Kamal Choudhary, Brian DeCost, Michael Greenwood, Jason Hattrick‐SimpersList of authors in order
- Landing page
-
https://arxiv.org/abs/2304.13076Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2304.13076Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2304.13076Direct OA link when available
- Concepts
-
Redundancy (engineering), Computer science, Robustness (evolution), Machine learning, Training set, Artificial intelligence, Data mining, Gene, Chemistry, Biochemistry, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
6Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2023: 5Per-year citation counts (last 5 years)
- References (count)
-
45Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4367189432 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2304.13076 |
| ids.doi | https://doi.org/10.48550/arxiv.2304.13076 |
| ids.openalex | https://openalex.org/W4367189432 |
| fwci | 0.80409057 |
| type | preprint |
| title | On the redundancy in large material datasets: efficient and robust learning with less data |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11948 |
| topics[0].field.id | https://openalex.org/fields/25 |
| topics[0].field.display_name | Materials Science |
| topics[0].score | 0.9890000224113464 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2505 |
| topics[0].subfield.display_name | Materials Chemistry |
| topics[0].display_name | Machine Learning in Materials Science |
| topics[1].id | https://openalex.org/T12072 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9797000288963318 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Machine Learning and Algorithms |
| topics[2].id | https://openalex.org/T12535 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9404000043869019 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Machine Learning and Data Classification |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C152124472 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7945031523704529 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1204361 |
| concepts[0].display_name | Redundancy (engineering) |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7624378800392151 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C63479239 |
| concepts[2].level | 3 |
| concepts[2].score | 0.715613842010498 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7353546 |
| concepts[2].display_name | Robustness (evolution) |
| concepts[3].id | https://openalex.org/C119857082 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6404979228973389 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[3].display_name | Machine learning |
| concepts[4].id | https://openalex.org/C51632099 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6106545925140381 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q3985153 |
| concepts[4].display_name | Training set |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5129415392875671 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C124101348 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4509996771812439 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[6].display_name | Data mining |
| concepts[7].id | https://openalex.org/C104317684 |
| concepts[7].level | 2 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[7].display_name | Gene |
| concepts[8].id | https://openalex.org/C185592680 |
| concepts[8].level | 0 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[8].display_name | Chemistry |
| concepts[9].id | https://openalex.org/C55493867 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[9].display_name | Biochemistry |
| concepts[10].id | https://openalex.org/C111919701 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[10].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/redundancy |
| keywords[0].score | 0.7945031523704529 |
| keywords[0].display_name | Redundancy (engineering) |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7624378800392151 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/robustness |
| keywords[2].score | 0.715613842010498 |
| keywords[2].display_name | Robustness (evolution) |
| keywords[3].id | https://openalex.org/keywords/machine-learning |
| keywords[3].score | 0.6404979228973389 |
| keywords[3].display_name | Machine learning |
| keywords[4].id | https://openalex.org/keywords/training-set |
| keywords[4].score | 0.6106545925140381 |
| keywords[4].display_name | Training set |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.5129415392875671 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/data-mining |
| keywords[6].score | 0.4509996771812439 |
| keywords[6].display_name | Data mining |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2304.13076 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2304.13076 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2304.13076 |
| locations[1].id | pmh:oai:zenodo.org:8200972 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400562 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| locations[1].source.host_organization | https://openalex.org/I67311998 |
| locations[1].source.host_organization_name | European Organization for Nuclear Research |
| locations[1].source.host_organization_lineage | https://openalex.org/I67311998 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | info:eu-repo/semantics/article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arXiv.2304.13076 |
| locations[2].id | doi:10.48550/arxiv.2304.13076 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400194 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | arXiv (Cornell University) |
| locations[2].source.host_organization | https://openalex.org/I205783295 |
| locations[2].source.host_organization_name | Cornell University |
| locations[2].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | |
| locations[2].raw_type | article-journal |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://doi.org/10.48550/arxiv.2304.13076 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5055766485 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4471-8527 |
| authorships[0].author.display_name | Kangming Li |
| authorships[0].countries | CA |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I106938459, https://openalex.org/I185261750 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Materials Science and Engineering, University of Toronto, 27 King's College Cir, Toronto, ON, Canada. |
| authorships[0].institutions[0].id | https://openalex.org/I106938459 |
| authorships[0].institutions[0].ror | https://ror.org/05nkf0n29 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I106938459 |
| authorships[0].institutions[0].country_code | CA |
| authorships[0].institutions[0].display_name | University of New Brunswick |
| authorships[0].institutions[1].id | https://openalex.org/I185261750 |
| authorships[0].institutions[1].ror | https://ror.org/03dbr7087 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I185261750 |
| authorships[0].institutions[1].country_code | CA |
| authorships[0].institutions[1].display_name | University of Toronto |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Kangming Li |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Materials Science and Engineering, University of Toronto, 27 King's College Cir, Toronto, ON, Canada. |
| authorships[1].author.id | https://openalex.org/A5025711363 |
| authorships[1].author.orcid | https://orcid.org/0009-0004-9980-2704 |
| authorships[1].author.display_name | Daniel Persaud |
| authorships[1].countries | CA |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I106938459, https://openalex.org/I185261750 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Materials Science and Engineering, University of Toronto, 27 King's College Cir, Toronto, ON, Canada. |
| authorships[1].institutions[0].id | https://openalex.org/I106938459 |
| authorships[1].institutions[0].ror | https://ror.org/05nkf0n29 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I106938459 |
| authorships[1].institutions[0].country_code | CA |
| authorships[1].institutions[0].display_name | University of New Brunswick |
| authorships[1].institutions[1].id | https://openalex.org/I185261750 |
| authorships[1].institutions[1].ror | https://ror.org/03dbr7087 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I185261750 |
| authorships[1].institutions[1].country_code | CA |
| authorships[1].institutions[1].display_name | University of Toronto |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Daniel Persaud |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Materials Science and Engineering, University of Toronto, 27 King's College Cir, Toronto, ON, Canada. |
| authorships[2].author.id | https://openalex.org/A5019215236 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-9737-8074 |
| authorships[2].author.display_name | Kamal Choudhary |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I1321296531, https://openalex.org/I4210147263 |
| authorships[2].affiliations[0].raw_affiliation_string | Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Dr, Gaithersburg, MD, USA. |
| authorships[2].institutions[0].id | https://openalex.org/I4210147263 |
| authorships[2].institutions[0].ror | https://ror.org/04a0y3b96 |
| authorships[2].institutions[0].type | government |
| authorships[2].institutions[0].lineage | https://openalex.org/I1321296531, https://openalex.org/I1343035065, https://openalex.org/I4210147263 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Material Measurement Laboratory |
| authorships[2].institutions[1].id | https://openalex.org/I1321296531 |
| authorships[2].institutions[1].ror | https://ror.org/05xpvk416 |
| authorships[2].institutions[1].type | government |
| authorships[2].institutions[1].lineage | https://openalex.org/I1321296531, https://openalex.org/I1343035065 |
| authorships[2].institutions[1].country_code | US |
| authorships[2].institutions[1].display_name | National Institute of Standards and Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Kamal Choudhary |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Dr, Gaithersburg, MD, USA. |
| authorships[3].author.id | https://openalex.org/A5053080365 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-3459-5888 |
| authorships[3].author.display_name | Brian DeCost |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I1321296531, https://openalex.org/I4210147263 |
| authorships[3].affiliations[0].raw_affiliation_string | Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Dr, Gaithersburg, MD, USA. |
| authorships[3].institutions[0].id | https://openalex.org/I4210147263 |
| authorships[3].institutions[0].ror | https://ror.org/04a0y3b96 |
| authorships[3].institutions[0].type | government |
| authorships[3].institutions[0].lineage | https://openalex.org/I1321296531, https://openalex.org/I1343035065, https://openalex.org/I4210147263 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Material Measurement Laboratory |
| authorships[3].institutions[1].id | https://openalex.org/I1321296531 |
| authorships[3].institutions[1].ror | https://ror.org/05xpvk416 |
| authorships[3].institutions[1].type | government |
| authorships[3].institutions[1].lineage | https://openalex.org/I1321296531, https://openalex.org/I1343035065 |
| authorships[3].institutions[1].country_code | US |
| authorships[3].institutions[1].display_name | National Institute of Standards and Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Brian DeCost |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Dr, Gaithersburg, MD, USA. |
| authorships[4].author.id | https://openalex.org/A5090654149 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-8327-9371 |
| authorships[4].author.display_name | Michael Greenwood |
| authorships[4].countries | CA |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I1281735042 |
| authorships[4].affiliations[0].raw_affiliation_string | Canmet MATERIALS, Natural Resources Canada, 183 Longwood Road south, Hamilton, ON, Canada. |
| authorships[4].institutions[0].id | https://openalex.org/I1281735042 |
| authorships[4].institutions[0].ror | https://ror.org/05hepy730 |
| authorships[4].institutions[0].type | government |
| authorships[4].institutions[0].lineage | https://openalex.org/I1281735042, https://openalex.org/I2802286613 |
| authorships[4].institutions[0].country_code | CA |
| authorships[4].institutions[0].display_name | Natural Resources Canada |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Michael Greenwood |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Canmet MATERIALS, Natural Resources Canada, 183 Longwood Road south, Hamilton, ON, Canada. |
| authorships[5].author.id | https://openalex.org/A5073635313 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-2937-3188 |
| authorships[5].author.display_name | Jason Hattrick‐Simpers |
| authorships[5].countries | CA |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I106938459, https://openalex.org/I185261750 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Materials Science and Engineering, University of Toronto, 27 King's College Cir, Toronto, ON, Canada. |
| authorships[5].institutions[0].id | https://openalex.org/I106938459 |
| authorships[5].institutions[0].ror | https://ror.org/05nkf0n29 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I106938459 |
| authorships[5].institutions[0].country_code | CA |
| authorships[5].institutions[0].display_name | University of New Brunswick |
| authorships[5].institutions[1].id | https://openalex.org/I185261750 |
| authorships[5].institutions[1].ror | https://ror.org/03dbr7087 |
| authorships[5].institutions[1].type | education |
| authorships[5].institutions[1].lineage | https://openalex.org/I185261750 |
| authorships[5].institutions[1].country_code | CA |
| authorships[5].institutions[1].display_name | University of Toronto |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Jason Hattrick-Simpers |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Materials Science and Engineering, University of Toronto, 27 King's College Cir, Toronto, ON, Canada. |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2304.13076 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2023-04-28T00:00:00 |
| display_name | On the redundancy in large material datasets: efficient and robust learning with less data |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11948 |
| primary_topic.field.id | https://openalex.org/fields/25 |
| primary_topic.field.display_name | Materials Science |
| primary_topic.score | 0.9890000224113464 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2505 |
| primary_topic.subfield.display_name | Materials Chemistry |
| primary_topic.display_name | Machine Learning in Materials Science |
| related_works | https://openalex.org/W1495042958, https://openalex.org/W2494338568, https://openalex.org/W2770593030, https://openalex.org/W3154990682, https://openalex.org/W2560201613, https://openalex.org/W2122678784, https://openalex.org/W2171975302, https://openalex.org/W2022352247, https://openalex.org/W2282510344, https://openalex.org/W139987158 |
| cited_by_count | 6 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 5 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:arXiv.org:2304.13076 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2304.13076 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2304.13076 |
| primary_location.id | pmh:oai:arXiv.org:2304.13076 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2304.13076 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2304.13076 |
| publication_date | 2023-04-25 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W4283398621, https://openalex.org/W2101234009, https://openalex.org/W2917193084, https://openalex.org/W4214930444, https://openalex.org/W3100221827, https://openalex.org/W3025104221, https://openalex.org/W3208687975, https://openalex.org/W4313304472, https://openalex.org/W3215518215, https://openalex.org/W3178883367, https://openalex.org/W2734520197, https://openalex.org/W2804431384, https://openalex.org/W2278970271, https://openalex.org/W4295846579, https://openalex.org/W3183861986, https://openalex.org/W4321085451, https://openalex.org/W4281476371, https://openalex.org/W1992985800, https://openalex.org/W2972597827, https://openalex.org/W4282041110, https://openalex.org/W2916338083, https://openalex.org/W4229818921, https://openalex.org/W3183767639, https://openalex.org/W4298149167, https://openalex.org/W2785813126, https://openalex.org/W2963899413, https://openalex.org/W1693986406, https://openalex.org/W1976492731, https://openalex.org/W3119113486, https://openalex.org/W4281258849, https://openalex.org/W3158834551, https://openalex.org/W4224143931, https://openalex.org/W4319865391, https://openalex.org/W4310135808, https://openalex.org/W3100220443, https://openalex.org/W3107581532, https://openalex.org/W4283761305, https://openalex.org/W3033499467, https://openalex.org/W3212512279, https://openalex.org/W4307415438, https://openalex.org/W4304185479, https://openalex.org/W3103297471, https://openalex.org/W2964332384, https://openalex.org/W2884430236, https://openalex.org/W4298178320 |
| referenced_works_count | 45 |
| abstract_inverted_index.% | 38 |
| abstract_inverted_index.a | 19, 138 |
| abstract_inverted_index.95 | 37 |
| abstract_inverted_index.In | 12, 76 |
| abstract_inverted_index.We | 93 |
| abstract_inverted_index.be | 42 |
| abstract_inverted_index.by | 32 |
| abstract_inverted_index.in | 100 |
| abstract_inverted_index.is | 59, 122 |
| abstract_inverted_index.of | 18, 22, 39, 97, 133 |
| abstract_inverted_index.on | 52, 73, 141 |
| abstract_inverted_index.to | 2, 36, 61, 129 |
| abstract_inverted_index.up | 35 |
| abstract_inverted_index.we | 15, 78 |
| abstract_inverted_index.The | 56 |
| abstract_inverted_index.and | 65, 104, 106, 113, 125 |
| abstract_inverted_index.but | 89 |
| abstract_inverted_index.can | 41, 85 |
| abstract_inverted_index.for | 28, 127 |
| abstract_inverted_index.not | 67 |
| abstract_inverted_index.the | 69, 95, 120, 130 |
| abstract_inverted_index.This | 117 |
| abstract_inverted_index.data | 5, 10, 40, 58, 99, 111, 135, 142 |
| abstract_inverted_index.does | 66 |
| abstract_inverted_index.from | 45 |
| abstract_inverted_index.have | 6 |
| abstract_inverted_index.into | 109 |
| abstract_inverted_index.much | 87 |
| abstract_inverted_index.show | 79 |
| abstract_inverted_index.than | 137 |
| abstract_inverted_index.that | 34, 80 |
| abstract_inverted_index.this | 13 |
| abstract_inverted_index.with | 49 |
| abstract_inverted_index.work | 118 |
| abstract_inverted_index.calls | 126 |
| abstract_inverted_index.large | 26 |
| abstract_inverted_index.types | 64 |
| abstract_inverted_index.across | 24 |
| abstract_inverted_index.active | 82 |
| abstract_inverted_index.degree | 21 |
| abstract_inverted_index.gather | 3 |
| abstract_inverted_index.impact | 51 |
| abstract_inverted_index.little | 50 |
| abstract_inverted_index.narrow | 139 |
| abstract_inverted_index.rather | 136 |
| abstract_inverted_index.safely | 43 |
| abstract_inverted_index.severe | 70 |
| abstract_inverted_index.study, | 14 |
| abstract_inverted_index."bigger | 121 |
| abstract_inverted_index.better" | 123 |
| abstract_inverted_index.discuss | 94 |
| abstract_inverted_index.efforts | 1 |
| abstract_inverted_index.equally | 90 |
| abstract_inverted_index.largely | 7 |
| abstract_inverted_index.machine | 46, 114 |
| abstract_inverted_index.present | 16 |
| abstract_inverted_index.provide | 107 |
| abstract_inverted_index.related | 60 |
| abstract_inverted_index.removed | 44 |
| abstract_inverted_index.smaller | 88 |
| abstract_inverted_index.various | 29 |
| abstract_inverted_index.volume. | 143 |
| abstract_inverted_index.datasets | 27 |
| abstract_inverted_index.emphasis | 140 |
| abstract_inverted_index.evidence | 17 |
| abstract_inverted_index.insights | 108 |
| abstract_inverted_index.learning | 47, 83, 115 |
| abstract_inverted_index.material | 30, 63 |
| abstract_inverted_index.mitigate | 68 |
| abstract_inverted_index.multiple | 25 |
| abstract_inverted_index.richness | 132 |
| abstract_inverted_index.samples. | 75 |
| abstract_inverted_index.training | 48 |
| abstract_inverted_index.Extensive | 0 |
| abstract_inverted_index.addition, | 77 |
| abstract_inverted_index.attention | 128 |
| abstract_inverted_index.construct | 86 |
| abstract_inverted_index.datasets. | 92 |
| abstract_inverted_index.efficient | 110 |
| abstract_inverted_index.improving | 101 |
| abstract_inverted_index.materials | 4, 134 |
| abstract_inverted_index.mentality | 124 |
| abstract_inverted_index.potential | 9 |
| abstract_inverted_index.redundant | 57 |
| abstract_inverted_index.revealing | 33 |
| abstract_inverted_index.training. | 116 |
| abstract_inverted_index.algorithms | 84 |
| abstract_inverted_index.challenges | 119 |
| abstract_inverted_index.overlooked | 8 |
| abstract_inverted_index.prediction | 54, 102 |
| abstract_inverted_index.redundancy | 23 |
| abstract_inverted_index.robustness | 105 |
| abstract_inverted_index.acquisition | 112 |
| abstract_inverted_index.degradation | 72 |
| abstract_inverted_index.information | 131 |
| abstract_inverted_index.informative | 91, 98 |
| abstract_inverted_index.performance | 71, 103 |
| abstract_inverted_index.properties, | 31 |
| abstract_inverted_index.redundancy. | 11 |
| abstract_inverted_index.significant | 20 |
| abstract_inverted_index.performance. | 55 |
| abstract_inverted_index.effectiveness | 96 |
| abstract_inverted_index.in-distribution | 53 |
| abstract_inverted_index.over-represented | 62 |
| abstract_inverted_index.uncertainty-based | 81 |
| abstract_inverted_index.out-of-distribution | 74 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.63389833 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |