On the second homotopy group of the classifying space for commutativity in Lie groups Article Swipe
Bernardo Villarreal
·
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2110.13109
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2110.13109
In this note we show that the second homotopy group of $B(2,G)$, the classifying space for commutativity for a compact Lie group $G$, contains a direct summand isomorphic to $π_1(G)\oplusπ_1([G,G])$, where $[G,G]$ is the commutator subgroup of $G$. It follows from a similar statement for $E(2,G)$, the homotopy fiber of the canonical inclusion $B(2,G)\hookrightarrow BG$. As a consequence of our main result we obtain that if $E(2,G)$ is 2-connected, then $[G,G]$ is simply-connected. This last result completes how the higher connectivity of $E(2,G)$ resembles the higher connectivity of $[G,G]$ for a compact Lie group $G$.
Related Topics
Concepts
Metadata
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2110.13109
- https://arxiv.org/pdf/2110.13109
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4286895308
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4286895308Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2110.13109Digital Object Identifier
- Title
-
On the second homotopy group of the classifying space for commutativity in Lie groupsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-10-25Full publication date if available
- Authors
-
Bernardo VillarrealList of authors in order
- Landing page
-
https://arxiv.org/abs/2110.13109Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2110.13109Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2110.13109Direct OA link when available
- Concepts
-
Mathematics, Lie group, Homotopy, Commutative property, Group (periodic table), Homotopy group, Commutator, Classifying space, Combinatorics, Pure mathematics, Commutator subgroup, Simply connected space, Normal subgroup, Physics, Lie conformal algebra, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4286895308 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2110.13109 |
| ids.doi | https://doi.org/10.48550/arxiv.2110.13109 |
| ids.openalex | https://openalex.org/W4286895308 |
| fwci | |
| type | preprint |
| title | On the second homotopy group of the classifying space for commutativity in Lie groups |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10896 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9993000030517578 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2610 |
| topics[0].subfield.display_name | Mathematical Physics |
| topics[0].display_name | Homotopy and Cohomology in Algebraic Topology |
| topics[1].id | https://openalex.org/T11680 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.9979000091552734 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2610 |
| topics[1].subfield.display_name | Mathematical Physics |
| topics[1].display_name | Advanced Algebra and Geometry |
| topics[2].id | https://openalex.org/T10899 |
| topics[2].field.id | https://openalex.org/fields/26 |
| topics[2].field.display_name | Mathematics |
| topics[2].score | 0.9959999918937683 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2610 |
| topics[2].subfield.display_name | Mathematical Physics |
| topics[2].display_name | Advanced Operator Algebra Research |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C33923547 |
| concepts[0].level | 0 |
| concepts[0].score | 0.837958574295044 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[0].display_name | Mathematics |
| concepts[1].id | https://openalex.org/C187915474 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6777437925338745 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q622679 |
| concepts[1].display_name | Lie group |
| concepts[2].id | https://openalex.org/C5961521 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6534366607666016 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q746083 |
| concepts[2].display_name | Homotopy |
| concepts[3].id | https://openalex.org/C183778304 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5797417759895325 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q165474 |
| concepts[3].display_name | Commutative property |
| concepts[4].id | https://openalex.org/C2781311116 |
| concepts[4].level | 2 |
| concepts[4].score | 0.555733323097229 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q83306 |
| concepts[4].display_name | Group (periodic table) |
| concepts[5].id | https://openalex.org/C147688034 |
| concepts[5].level | 3 |
| concepts[5].score | 0.5439690351486206 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1626416 |
| concepts[5].display_name | Homotopy group |
| concepts[6].id | https://openalex.org/C145620117 |
| concepts[6].level | 4 |
| concepts[6].score | 0.53547203540802 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2989763 |
| concepts[6].display_name | Commutator |
| concepts[7].id | https://openalex.org/C64694042 |
| concepts[7].level | 3 |
| concepts[7].score | 0.49085599184036255 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q5128445 |
| concepts[7].display_name | Classifying space |
| concepts[8].id | https://openalex.org/C114614502 |
| concepts[8].level | 1 |
| concepts[8].score | 0.4707188010215759 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[8].display_name | Combinatorics |
| concepts[9].id | https://openalex.org/C202444582 |
| concepts[9].level | 1 |
| concepts[9].score | 0.45272165536880493 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[9].display_name | Pure mathematics |
| concepts[10].id | https://openalex.org/C140865510 |
| concepts[10].level | 4 |
| concepts[10].score | 0.4526675343513489 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q522216 |
| concepts[10].display_name | Commutator subgroup |
| concepts[11].id | https://openalex.org/C167204820 |
| concepts[11].level | 2 |
| concepts[11].score | 0.41377854347229004 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q912058 |
| concepts[11].display_name | Simply connected space |
| concepts[12].id | https://openalex.org/C105515060 |
| concepts[12].level | 3 |
| concepts[12].score | 0.17136037349700928 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q743179 |
| concepts[12].display_name | Normal subgroup |
| concepts[13].id | https://openalex.org/C121332964 |
| concepts[13].level | 0 |
| concepts[13].score | 0.13774222135543823 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[13].display_name | Physics |
| concepts[14].id | https://openalex.org/C73648015 |
| concepts[14].level | 3 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q6543817 |
| concepts[14].display_name | Lie conformal algebra |
| concepts[15].id | https://openalex.org/C62520636 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[15].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/mathematics |
| keywords[0].score | 0.837958574295044 |
| keywords[0].display_name | Mathematics |
| keywords[1].id | https://openalex.org/keywords/lie-group |
| keywords[1].score | 0.6777437925338745 |
| keywords[1].display_name | Lie group |
| keywords[2].id | https://openalex.org/keywords/homotopy |
| keywords[2].score | 0.6534366607666016 |
| keywords[2].display_name | Homotopy |
| keywords[3].id | https://openalex.org/keywords/commutative-property |
| keywords[3].score | 0.5797417759895325 |
| keywords[3].display_name | Commutative property |
| keywords[4].id | https://openalex.org/keywords/group |
| keywords[4].score | 0.555733323097229 |
| keywords[4].display_name | Group (periodic table) |
| keywords[5].id | https://openalex.org/keywords/homotopy-group |
| keywords[5].score | 0.5439690351486206 |
| keywords[5].display_name | Homotopy group |
| keywords[6].id | https://openalex.org/keywords/commutator |
| keywords[6].score | 0.53547203540802 |
| keywords[6].display_name | Commutator |
| keywords[7].id | https://openalex.org/keywords/classifying-space |
| keywords[7].score | 0.49085599184036255 |
| keywords[7].display_name | Classifying space |
| keywords[8].id | https://openalex.org/keywords/combinatorics |
| keywords[8].score | 0.4707188010215759 |
| keywords[8].display_name | Combinatorics |
| keywords[9].id | https://openalex.org/keywords/pure-mathematics |
| keywords[9].score | 0.45272165536880493 |
| keywords[9].display_name | Pure mathematics |
| keywords[10].id | https://openalex.org/keywords/commutator-subgroup |
| keywords[10].score | 0.4526675343513489 |
| keywords[10].display_name | Commutator subgroup |
| keywords[11].id | https://openalex.org/keywords/simply-connected-space |
| keywords[11].score | 0.41377854347229004 |
| keywords[11].display_name | Simply connected space |
| keywords[12].id | https://openalex.org/keywords/normal-subgroup |
| keywords[12].score | 0.17136037349700928 |
| keywords[12].display_name | Normal subgroup |
| keywords[13].id | https://openalex.org/keywords/physics |
| keywords[13].score | 0.13774222135543823 |
| keywords[13].display_name | Physics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2110.13109 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2110.13109 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2110.13109 |
| locations[1].id | doi:10.48550/arxiv.2110.13109 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2110.13109 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5011802109 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6856-9509 |
| authorships[0].author.display_name | Bernardo Villarreal |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Villarreal, Bernardo |
| authorships[0].is_corresponding | True |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2110.13109 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | On the second homotopy group of the classifying space for commutativity in Lie groups |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10896 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9993000030517578 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2610 |
| primary_topic.subfield.display_name | Mathematical Physics |
| primary_topic.display_name | Homotopy and Cohomology in Algebraic Topology |
| related_works | https://openalex.org/W2613986233, https://openalex.org/W3121340560, https://openalex.org/W2765446779, https://openalex.org/W4299078002, https://openalex.org/W1567576179, https://openalex.org/W2380639161, https://openalex.org/W2089442824, https://openalex.org/W2380927678, https://openalex.org/W2363055171, https://openalex.org/W1569310352 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2110.13109 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2110.13109 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2110.13109 |
| primary_location.id | pmh:oai:arXiv.org:2110.13109 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2110.13109 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2110.13109 |
| publication_date | 2021-10-25 |
| publication_year | 2021 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 18, 24, 41, 56, 90 |
| abstract_inverted_index.As | 55 |
| abstract_inverted_index.In | 0 |
| abstract_inverted_index.It | 38 |
| abstract_inverted_index.if | 65 |
| abstract_inverted_index.is | 32, 67, 71 |
| abstract_inverted_index.of | 10, 36, 49, 58, 81, 87 |
| abstract_inverted_index.to | 28 |
| abstract_inverted_index.we | 3, 62 |
| abstract_inverted_index.Lie | 20, 92 |
| abstract_inverted_index.for | 15, 17, 44, 89 |
| abstract_inverted_index.how | 77 |
| abstract_inverted_index.our | 59 |
| abstract_inverted_index.the | 6, 12, 33, 46, 50, 78, 84 |
| abstract_inverted_index.$G$, | 22 |
| abstract_inverted_index.$G$. | 37, 94 |
| abstract_inverted_index.BG$. | 54 |
| abstract_inverted_index.This | 73 |
| abstract_inverted_index.from | 40 |
| abstract_inverted_index.last | 74 |
| abstract_inverted_index.main | 60 |
| abstract_inverted_index.note | 2 |
| abstract_inverted_index.show | 4 |
| abstract_inverted_index.that | 5, 64 |
| abstract_inverted_index.then | 69 |
| abstract_inverted_index.this | 1 |
| abstract_inverted_index.fiber | 48 |
| abstract_inverted_index.group | 9, 21, 93 |
| abstract_inverted_index.space | 14 |
| abstract_inverted_index.where | 30 |
| abstract_inverted_index.direct | 25 |
| abstract_inverted_index.higher | 79, 85 |
| abstract_inverted_index.obtain | 63 |
| abstract_inverted_index.result | 61, 75 |
| abstract_inverted_index.second | 7 |
| abstract_inverted_index.$[G,G]$ | 31, 70, 88 |
| abstract_inverted_index.compact | 19, 91 |
| abstract_inverted_index.follows | 39 |
| abstract_inverted_index.similar | 42 |
| abstract_inverted_index.summand | 26 |
| abstract_inverted_index.$E(2,G)$ | 66, 82 |
| abstract_inverted_index.contains | 23 |
| abstract_inverted_index.homotopy | 8, 47 |
| abstract_inverted_index.subgroup | 35 |
| abstract_inverted_index.$B(2,G)$, | 11 |
| abstract_inverted_index.$E(2,G)$, | 45 |
| abstract_inverted_index.canonical | 51 |
| abstract_inverted_index.completes | 76 |
| abstract_inverted_index.inclusion | 52 |
| abstract_inverted_index.resembles | 83 |
| abstract_inverted_index.statement | 43 |
| abstract_inverted_index.commutator | 34 |
| abstract_inverted_index.isomorphic | 27 |
| abstract_inverted_index.classifying | 13 |
| abstract_inverted_index.consequence | 57 |
| abstract_inverted_index.2-connected, | 68 |
| abstract_inverted_index.connectivity | 80, 86 |
| abstract_inverted_index.commutativity | 16 |
| abstract_inverted_index.simply-connected. | 72 |
| abstract_inverted_index.$B(2,G)\hookrightarrow | 53 |
| abstract_inverted_index.$π_1(G)\oplusπ_1([G,G])$, | 29 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5011802109 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 1 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[0].score | 0.6000000238418579 |
| sustainable_development_goals[0].display_name | Reduced inequalities |
| citation_normalized_percentile |