On the Structural Generalization in Text-to-SQL Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2301.04790
Exploring the generalization of a text-to-SQL parser is essential for a system to automatically adapt the real-world databases. Previous works provided investigations focusing on lexical diversity, including the influence of the synonym and perturbations in both natural language questions and databases. However, research on the structure variety of database schema~(DS) is deficient. Specifically, confronted with the same input question, the target SQL is probably represented in different ways when the DS comes to a different structure. In this work, we provide in-deep discussions about the structural generalization of text-to-SQL tasks. We observe that current datasets are too templated to study structural generalization. To collect eligible test data, we propose a framework to generate novel text-to-SQL data via automatic and synchronous (DS, SQL) pair altering. In the experiments, significant performance reduction when evaluating well-trained text-to-SQL models on the synthetic samples demonstrates the limitation of current research regarding structural generalization. According to comprehensive analysis, we suggest the practical reason is the overfitting of (NL, SQL) patterns.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2301.04790
- https://arxiv.org/pdf/2301.04790
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4316116747
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4316116747Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2301.04790Digital Object Identifier
- Title
-
On the Structural Generalization in Text-to-SQLWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-01-12Full publication date if available
- Authors
-
Jieyu Li, Lu Chen, Ruisheng Cao, Zhu Su, Hongshen Xu, Zhi Chen, Hanchong Zhang, Kai YuList of authors in order
- Landing page
-
https://arxiv.org/abs/2301.04790Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2301.04790Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2301.04790Direct OA link when available
- Concepts
-
Computer science, SQL, Generalization, Overfitting, Schema (genetic algorithms), Natural language processing, Artificial intelligence, Parsing, Query by Example, Null (SQL), Programming language, Database, Information retrieval, Mathematics, Artificial neural network, Web search query, Mathematical analysis, Search engineTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4316116747 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2301.04790 |
| ids.doi | https://doi.org/10.48550/arxiv.2301.04790 |
| ids.openalex | https://openalex.org/W4316116747 |
| fwci | |
| type | preprint |
| title | On the Structural Generalization in Text-to-SQL |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10181 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9962999820709229 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Natural Language Processing Techniques |
| topics[1].id | https://openalex.org/T10028 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.982200026512146 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Topic Modeling |
| topics[2].id | https://openalex.org/T10215 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9732999801635742 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Semantic Web and Ontologies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8117334842681885 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C510870499 |
| concepts[1].level | 2 |
| concepts[1].score | 0.726213276386261 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q47607 |
| concepts[1].display_name | SQL |
| concepts[2].id | https://openalex.org/C177148314 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6250278353691101 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q170084 |
| concepts[2].display_name | Generalization |
| concepts[3].id | https://openalex.org/C22019652 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5406287908554077 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q331309 |
| concepts[3].display_name | Overfitting |
| concepts[4].id | https://openalex.org/C52146309 |
| concepts[4].level | 2 |
| concepts[4].score | 0.47345301508903503 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7431116 |
| concepts[4].display_name | Schema (genetic algorithms) |
| concepts[5].id | https://openalex.org/C204321447 |
| concepts[5].level | 1 |
| concepts[5].score | 0.47048380970954895 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[5].display_name | Natural language processing |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.44637569785118103 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C186644900 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4398093819618225 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q194152 |
| concepts[7].display_name | Parsing |
| concepts[8].id | https://openalex.org/C194222762 |
| concepts[8].level | 4 |
| concepts[8].score | 0.43416231870651245 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q114486 |
| concepts[8].display_name | Query by Example |
| concepts[9].id | https://openalex.org/C203763787 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4218016266822815 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q371029 |
| concepts[9].display_name | Null (SQL) |
| concepts[10].id | https://openalex.org/C199360897 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3063519299030304 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[10].display_name | Programming language |
| concepts[11].id | https://openalex.org/C77088390 |
| concepts[11].level | 1 |
| concepts[11].score | 0.2983953356742859 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8513 |
| concepts[11].display_name | Database |
| concepts[12].id | https://openalex.org/C23123220 |
| concepts[12].level | 1 |
| concepts[12].score | 0.28266894817352295 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q816826 |
| concepts[12].display_name | Information retrieval |
| concepts[13].id | https://openalex.org/C33923547 |
| concepts[13].level | 0 |
| concepts[13].score | 0.09341603517532349 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[13].display_name | Mathematics |
| concepts[14].id | https://openalex.org/C50644808 |
| concepts[14].level | 2 |
| concepts[14].score | 0.0685831606388092 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[14].display_name | Artificial neural network |
| concepts[15].id | https://openalex.org/C164120249 |
| concepts[15].level | 3 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q995982 |
| concepts[15].display_name | Web search query |
| concepts[16].id | https://openalex.org/C134306372 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[16].display_name | Mathematical analysis |
| concepts[17].id | https://openalex.org/C97854310 |
| concepts[17].level | 2 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q19541 |
| concepts[17].display_name | Search engine |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8117334842681885 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/sql |
| keywords[1].score | 0.726213276386261 |
| keywords[1].display_name | SQL |
| keywords[2].id | https://openalex.org/keywords/generalization |
| keywords[2].score | 0.6250278353691101 |
| keywords[2].display_name | Generalization |
| keywords[3].id | https://openalex.org/keywords/overfitting |
| keywords[3].score | 0.5406287908554077 |
| keywords[3].display_name | Overfitting |
| keywords[4].id | https://openalex.org/keywords/schema |
| keywords[4].score | 0.47345301508903503 |
| keywords[4].display_name | Schema (genetic algorithms) |
| keywords[5].id | https://openalex.org/keywords/natural-language-processing |
| keywords[5].score | 0.47048380970954895 |
| keywords[5].display_name | Natural language processing |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.44637569785118103 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/parsing |
| keywords[7].score | 0.4398093819618225 |
| keywords[7].display_name | Parsing |
| keywords[8].id | https://openalex.org/keywords/query-by-example |
| keywords[8].score | 0.43416231870651245 |
| keywords[8].display_name | Query by Example |
| keywords[9].id | https://openalex.org/keywords/null |
| keywords[9].score | 0.4218016266822815 |
| keywords[9].display_name | Null (SQL) |
| keywords[10].id | https://openalex.org/keywords/programming-language |
| keywords[10].score | 0.3063519299030304 |
| keywords[10].display_name | Programming language |
| keywords[11].id | https://openalex.org/keywords/database |
| keywords[11].score | 0.2983953356742859 |
| keywords[11].display_name | Database |
| keywords[12].id | https://openalex.org/keywords/information-retrieval |
| keywords[12].score | 0.28266894817352295 |
| keywords[12].display_name | Information retrieval |
| keywords[13].id | https://openalex.org/keywords/mathematics |
| keywords[13].score | 0.09341603517532349 |
| keywords[13].display_name | Mathematics |
| keywords[14].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[14].score | 0.0685831606388092 |
| keywords[14].display_name | Artificial neural network |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2301.04790 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2301.04790 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2301.04790 |
| locations[1].id | doi:10.48550/arxiv.2301.04790 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2301.04790 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5101522442 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-8868-6905 |
| authorships[0].author.display_name | Jieyu Li |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Li, Jieyu |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100432093 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5685-7017 |
| authorships[1].author.display_name | Lu Chen |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Chen, Lu |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5033252354 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4635-4368 |
| authorships[2].author.display_name | Ruisheng Cao |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Cao, Ruisheng |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5102206440 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Zhu Su |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Zhu, Su |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5100574387 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Hongshen Xu |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Xu, Hongshen |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5100456847 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-2911-5234 |
| authorships[5].author.display_name | Zhi Chen |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Chen, Zhi |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5009687357 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-1152-4355 |
| authorships[6].author.display_name | Hanchong Zhang |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Zhang, Hanchong |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5111980517 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | Kai Yu |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Yu, Kai |
| authorships[7].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2301.04790 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | On the Structural Generalization in Text-to-SQL |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10181 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9962999820709229 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Natural Language Processing Techniques |
| related_works | https://openalex.org/W151494989, https://openalex.org/W1488984669, https://openalex.org/W2031915568, https://openalex.org/W3210031882, https://openalex.org/W4388053677, https://openalex.org/W2038123353, https://openalex.org/W2108932068, https://openalex.org/W4223894417, https://openalex.org/W3114457612, https://openalex.org/W4281757942 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2301.04790 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2301.04790 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2301.04790 |
| primary_location.id | pmh:oai:arXiv.org:2301.04790 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2301.04790 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2301.04790 |
| publication_date | 2023-01-12 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 4, 10, 73, 109 |
| abstract_inverted_index.DS | 70 |
| abstract_inverted_index.In | 76, 124 |
| abstract_inverted_index.To | 102 |
| abstract_inverted_index.We | 90 |
| abstract_inverted_index.in | 34, 65 |
| abstract_inverted_index.is | 7, 50, 62, 157 |
| abstract_inverted_index.of | 3, 29, 47, 87, 142, 160 |
| abstract_inverted_index.on | 23, 43, 135 |
| abstract_inverted_index.to | 12, 72, 98, 111, 149 |
| abstract_inverted_index.we | 79, 107, 152 |
| abstract_inverted_index.SQL | 61 |
| abstract_inverted_index.and | 32, 39, 118 |
| abstract_inverted_index.are | 95 |
| abstract_inverted_index.for | 9 |
| abstract_inverted_index.the | 1, 15, 27, 30, 44, 55, 59, 69, 84, 125, 136, 140, 154, 158 |
| abstract_inverted_index.too | 96 |
| abstract_inverted_index.via | 116 |
| abstract_inverted_index.(DS, | 120 |
| abstract_inverted_index.(NL, | 161 |
| abstract_inverted_index.SQL) | 121, 162 |
| abstract_inverted_index.both | 35 |
| abstract_inverted_index.data | 115 |
| abstract_inverted_index.pair | 122 |
| abstract_inverted_index.same | 56 |
| abstract_inverted_index.test | 105 |
| abstract_inverted_index.that | 92 |
| abstract_inverted_index.this | 77 |
| abstract_inverted_index.ways | 67 |
| abstract_inverted_index.when | 68, 130 |
| abstract_inverted_index.with | 54 |
| abstract_inverted_index.about | 83 |
| abstract_inverted_index.adapt | 14 |
| abstract_inverted_index.comes | 71 |
| abstract_inverted_index.data, | 106 |
| abstract_inverted_index.input | 57 |
| abstract_inverted_index.novel | 113 |
| abstract_inverted_index.study | 99 |
| abstract_inverted_index.work, | 78 |
| abstract_inverted_index.works | 19 |
| abstract_inverted_index.models | 134 |
| abstract_inverted_index.parser | 6 |
| abstract_inverted_index.reason | 156 |
| abstract_inverted_index.system | 11 |
| abstract_inverted_index.target | 60 |
| abstract_inverted_index.tasks. | 89 |
| abstract_inverted_index.collect | 103 |
| abstract_inverted_index.current | 93, 143 |
| abstract_inverted_index.in-deep | 81 |
| abstract_inverted_index.lexical | 24 |
| abstract_inverted_index.natural | 36 |
| abstract_inverted_index.observe | 91 |
| abstract_inverted_index.propose | 108 |
| abstract_inverted_index.provide | 80 |
| abstract_inverted_index.samples | 138 |
| abstract_inverted_index.suggest | 153 |
| abstract_inverted_index.synonym | 31 |
| abstract_inverted_index.variety | 46 |
| abstract_inverted_index.However, | 41 |
| abstract_inverted_index.Previous | 18 |
| abstract_inverted_index.database | 48 |
| abstract_inverted_index.datasets | 94 |
| abstract_inverted_index.eligible | 104 |
| abstract_inverted_index.focusing | 22 |
| abstract_inverted_index.generate | 112 |
| abstract_inverted_index.language | 37 |
| abstract_inverted_index.probably | 63 |
| abstract_inverted_index.provided | 20 |
| abstract_inverted_index.research | 42, 144 |
| abstract_inverted_index.According | 148 |
| abstract_inverted_index.Exploring | 0 |
| abstract_inverted_index.altering. | 123 |
| abstract_inverted_index.analysis, | 151 |
| abstract_inverted_index.automatic | 117 |
| abstract_inverted_index.different | 66, 74 |
| abstract_inverted_index.essential | 8 |
| abstract_inverted_index.framework | 110 |
| abstract_inverted_index.including | 26 |
| abstract_inverted_index.influence | 28 |
| abstract_inverted_index.patterns. | 163 |
| abstract_inverted_index.practical | 155 |
| abstract_inverted_index.question, | 58 |
| abstract_inverted_index.questions | 38 |
| abstract_inverted_index.reduction | 129 |
| abstract_inverted_index.regarding | 145 |
| abstract_inverted_index.structure | 45 |
| abstract_inverted_index.synthetic | 137 |
| abstract_inverted_index.templated | 97 |
| abstract_inverted_index.confronted | 53 |
| abstract_inverted_index.databases. | 17, 40 |
| abstract_inverted_index.deficient. | 51 |
| abstract_inverted_index.diversity, | 25 |
| abstract_inverted_index.evaluating | 131 |
| abstract_inverted_index.limitation | 141 |
| abstract_inverted_index.real-world | 16 |
| abstract_inverted_index.structural | 85, 100, 146 |
| abstract_inverted_index.structure. | 75 |
| abstract_inverted_index.discussions | 82 |
| abstract_inverted_index.overfitting | 159 |
| abstract_inverted_index.performance | 128 |
| abstract_inverted_index.represented | 64 |
| abstract_inverted_index.schema~(DS) | 49 |
| abstract_inverted_index.significant | 127 |
| abstract_inverted_index.synchronous | 119 |
| abstract_inverted_index.text-to-SQL | 5, 88, 114, 133 |
| abstract_inverted_index.demonstrates | 139 |
| abstract_inverted_index.experiments, | 126 |
| abstract_inverted_index.well-trained | 132 |
| abstract_inverted_index.Specifically, | 52 |
| abstract_inverted_index.automatically | 13 |
| abstract_inverted_index.comprehensive | 150 |
| abstract_inverted_index.perturbations | 33 |
| abstract_inverted_index.generalization | 2, 86 |
| abstract_inverted_index.investigations | 21 |
| abstract_inverted_index.generalization. | 101, 147 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 8 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.7400000095367432 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile |