On the use of explainable AI for susceptibility modeling: Examining the spatial pattern of SHAP values Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1016/j.gsf.2024.101800
Hydro-morphological processes (HMP, any natural phenomenon contained within the spectrum defined between debris flows and flash floods) are globally occurring natural hazards which pose great threats to our society, leading to fatalities and economical losses. For this reason, understanding the dynamics behind HMPs is needed to aid in hazard and risk assessment. In this work, we take advantage of an explainable deep learning model to extract global and local interpretations of the HMP occurrences across the whole Chinese territory. We use a deep neural network architecture and interpret the model results through the spatial pattern of SHAP values. In doing so, we can understand the model prediction on a hierarchical basis, looking at how the predictor set controls the overall susceptibility as well as doing the same at the level of the single mapping unit. Our model accurately predicts HMP occurrences with AUC values measured in a ten-fold cross-validation ranging between 0.83 and 0.86. This level of predictive performance attests for an excellent prediction skill. The main difference with respect to traditional statistical tools is that the latter usually lead to a clear interpretation at the expense of high performance, which is otherwise reached via machine/deep learning solutions, though at the expense of interpretation. The recent development of explainable AI is the key to combine both strengths. In this work, we explore this combination in the context of HMP susceptibility modeling. Specifically, we demonstrate the extent to which one can enter a new level of data-driven interpretation, supporting the decision-making process behind disaster risk mitigation and prevention actions.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.gsf.2024.101800
- OA Status
- hybrid
- Cited By
- 50
- References
- 116
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4391481698
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4391481698Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.gsf.2024.101800Digital Object Identifier
- Title
-
On the use of explainable AI for susceptibility modeling: Examining the spatial pattern of SHAP valuesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-02-02Full publication date if available
- Authors
-
Nan Wang, Hongyan Zhang, Ashok Dahal, Weiming Cheng, Min Zhao, Luigi LombardoList of authors in order
- Landing page
-
https://doi.org/10.1016/j.gsf.2024.101800Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.gsf.2024.101800Direct OA link when available
- Concepts
-
Context (archaeology), Computer science, Interpretation (philosophy), Artificial intelligence, Spatial contextual awareness, Deep learning, Hazard, Set (abstract data type), Artificial neural network, Machine learning, Data science, Geography, Archaeology, Programming language, Organic chemistry, ChemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
50Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 38, 2024: 12Per-year citation counts (last 5 years)
- References (count)
-
116Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4391481698 |
|---|---|
| doi | https://doi.org/10.1016/j.gsf.2024.101800 |
| ids.doi | https://doi.org/10.1016/j.gsf.2024.101800 |
| ids.openalex | https://openalex.org/W4391481698 |
| fwci | 70.10541092 |
| type | article |
| title | On the use of explainable AI for susceptibility modeling: Examining the spatial pattern of SHAP values |
| awards[0].id | https://openalex.org/G8148999227 |
| awards[0].funder_id | https://openalex.org/F4320335787 |
| awards[0].display_name | |
| awards[0].funder_award_id | 2412022QD003 |
| awards[0].funder_display_name | Fundamental Research Funds for the Central Universities |
| awards[1].id | https://openalex.org/G3452581600 |
| awards[1].funder_id | https://openalex.org/F4320321001 |
| awards[1].display_name | |
| awards[1].funder_award_id | 42201452 |
| awards[1].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | 4 |
| biblio.volume | 15 |
| biblio.last_page | 101800 |
| biblio.first_page | 101800 |
| topics[0].id | https://openalex.org/T10535 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2308 |
| topics[0].subfield.display_name | Management, Monitoring, Policy and Law |
| topics[0].display_name | Landslides and related hazards |
| topics[1].id | https://openalex.org/T10930 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9998000264167786 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2306 |
| topics[1].subfield.display_name | Global and Planetary Change |
| topics[1].display_name | Flood Risk Assessment and Management |
| topics[2].id | https://openalex.org/T10330 |
| topics[2].field.id | https://openalex.org/fields/23 |
| topics[2].field.display_name | Environmental Science |
| topics[2].score | 0.9890999794006348 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2312 |
| topics[2].subfield.display_name | Water Science and Technology |
| topics[2].display_name | Hydrology and Watershed Management Studies |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| funders[1].id | https://openalex.org/F4320322723 |
| funders[1].ror | https://ror.org/00m4czf33 |
| funders[1].display_name | China Institute of Water Resources and Hydropower Research |
| funders[2].id | https://openalex.org/F4320335787 |
| funders[2].ror | |
| funders[2].display_name | Fundamental Research Funds for the Central Universities |
| is_xpac | False |
| apc_list.value | 3000 |
| apc_list.currency | USD |
| apc_list.value_usd | 3000 |
| apc_paid.value | 3000 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 3000 |
| concepts[0].id | https://openalex.org/C2779343474 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7263361215591431 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q3109175 |
| concepts[0].display_name | Context (archaeology) |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6076393127441406 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C527412718 |
| concepts[2].level | 2 |
| concepts[2].score | 0.58122718334198 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q855395 |
| concepts[2].display_name | Interpretation (philosophy) |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5175834894180298 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C64754055 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4966939091682434 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7574053 |
| concepts[4].display_name | Spatial contextual awareness |
| concepts[5].id | https://openalex.org/C108583219 |
| concepts[5].level | 2 |
| concepts[5].score | 0.49489349126815796 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[5].display_name | Deep learning |
| concepts[6].id | https://openalex.org/C49261128 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4658763110637665 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1132455 |
| concepts[6].display_name | Hazard |
| concepts[7].id | https://openalex.org/C177264268 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4521799087524414 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[7].display_name | Set (abstract data type) |
| concepts[8].id | https://openalex.org/C50644808 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4427228569984436 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[8].display_name | Artificial neural network |
| concepts[9].id | https://openalex.org/C119857082 |
| concepts[9].level | 1 |
| concepts[9].score | 0.4119037389755249 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[9].display_name | Machine learning |
| concepts[10].id | https://openalex.org/C2522767166 |
| concepts[10].level | 1 |
| concepts[10].score | 0.32888635993003845 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[10].display_name | Data science |
| concepts[11].id | https://openalex.org/C205649164 |
| concepts[11].level | 0 |
| concepts[11].score | 0.19796088337898254 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[11].display_name | Geography |
| concepts[12].id | https://openalex.org/C166957645 |
| concepts[12].level | 1 |
| concepts[12].score | 0.09901991486549377 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q23498 |
| concepts[12].display_name | Archaeology |
| concepts[13].id | https://openalex.org/C199360897 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[13].display_name | Programming language |
| concepts[14].id | https://openalex.org/C178790620 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q11351 |
| concepts[14].display_name | Organic chemistry |
| concepts[15].id | https://openalex.org/C185592680 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[15].display_name | Chemistry |
| keywords[0].id | https://openalex.org/keywords/context |
| keywords[0].score | 0.7263361215591431 |
| keywords[0].display_name | Context (archaeology) |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6076393127441406 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/interpretation |
| keywords[2].score | 0.58122718334198 |
| keywords[2].display_name | Interpretation (philosophy) |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.5175834894180298 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/spatial-contextual-awareness |
| keywords[4].score | 0.4966939091682434 |
| keywords[4].display_name | Spatial contextual awareness |
| keywords[5].id | https://openalex.org/keywords/deep-learning |
| keywords[5].score | 0.49489349126815796 |
| keywords[5].display_name | Deep learning |
| keywords[6].id | https://openalex.org/keywords/hazard |
| keywords[6].score | 0.4658763110637665 |
| keywords[6].display_name | Hazard |
| keywords[7].id | https://openalex.org/keywords/set |
| keywords[7].score | 0.4521799087524414 |
| keywords[7].display_name | Set (abstract data type) |
| keywords[8].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[8].score | 0.4427228569984436 |
| keywords[8].display_name | Artificial neural network |
| keywords[9].id | https://openalex.org/keywords/machine-learning |
| keywords[9].score | 0.4119037389755249 |
| keywords[9].display_name | Machine learning |
| keywords[10].id | https://openalex.org/keywords/data-science |
| keywords[10].score | 0.32888635993003845 |
| keywords[10].display_name | Data science |
| keywords[11].id | https://openalex.org/keywords/geography |
| keywords[11].score | 0.19796088337898254 |
| keywords[11].display_name | Geography |
| keywords[12].id | https://openalex.org/keywords/archaeology |
| keywords[12].score | 0.09901991486549377 |
| keywords[12].display_name | Archaeology |
| language | en |
| locations[0].id | doi:10.1016/j.gsf.2024.101800 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2764860519 |
| locations[0].source.issn | 1674-9871, 2588-9192 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1674-9871 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Geoscience Frontiers |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Geoscience Frontiers |
| locations[0].landing_page_url | https://doi.org/10.1016/j.gsf.2024.101800 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5100332713 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7491-3580 |
| authorships[0].author.display_name | Nan Wang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I184983240 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Geographical Sciences, Northeast Normal University, Changchun 130024, China |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210160793 |
| authorships[0].affiliations[1].raw_affiliation_string | State Key Laboratory of Resources and Environmental Information Systems, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China |
| authorships[0].institutions[0].id | https://openalex.org/I19820366 |
| authorships[0].institutions[0].ror | https://ror.org/034t30j35 |
| authorships[0].institutions[0].type | government |
| authorships[0].institutions[0].lineage | https://openalex.org/I19820366 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Chinese Academy of Sciences |
| authorships[0].institutions[1].id | https://openalex.org/I4210160793 |
| authorships[0].institutions[1].ror | https://ror.org/04t1cdb72 |
| authorships[0].institutions[1].type | facility |
| authorships[0].institutions[1].lineage | https://openalex.org/I19820366, https://openalex.org/I4210160793 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | Institute of Geographic Sciences and Natural Resources Research |
| authorships[0].institutions[2].id | https://openalex.org/I184983240 |
| authorships[0].institutions[2].ror | https://ror.org/02rkvz144 |
| authorships[0].institutions[2].type | education |
| authorships[0].institutions[2].lineage | https://openalex.org/I184983240 |
| authorships[0].institutions[2].country_code | CN |
| authorships[0].institutions[2].display_name | Northeast Normal University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Nan Wang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Geographical Sciences, Northeast Normal University, Changchun 130024, China, State Key Laboratory of Resources and Environmental Information Systems, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China |
| authorships[1].author.id | https://openalex.org/A5100620917 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5262-8076 |
| authorships[1].author.display_name | Hongyan Zhang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I184983240 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Geographical Sciences, Northeast Normal University, Changchun 130024, China |
| authorships[1].institutions[0].id | https://openalex.org/I184983240 |
| authorships[1].institutions[0].ror | https://ror.org/02rkvz144 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I184983240 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Northeast Normal University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Hongyan Zhang |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | School of Geographical Sciences, Northeast Normal University, Changchun 130024, China |
| authorships[2].author.id | https://openalex.org/A5086534279 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-3269-5575 |
| authorships[2].author.display_name | Ashok Dahal |
| authorships[2].countries | NL |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I94624287 |
| authorships[2].affiliations[0].raw_affiliation_string | University of Twente, Faculty of Geo-Information Science and Earth Observation (ITC), PO Box 217, Enschede, AE 7500, Netherlands |
| authorships[2].institutions[0].id | https://openalex.org/I94624287 |
| authorships[2].institutions[0].ror | https://ror.org/006hf6230 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I94624287 |
| authorships[2].institutions[0].country_code | NL |
| authorships[2].institutions[0].display_name | University of Twente |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ashok Dahal |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | University of Twente, Faculty of Geo-Information Science and Earth Observation (ITC), PO Box 217, Enschede, AE 7500, Netherlands |
| authorships[3].author.id | https://openalex.org/A5087300057 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-1580-4979 |
| authorships[3].author.display_name | Weiming Cheng |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210165038 |
| authorships[3].affiliations[0].raw_affiliation_string | University of Chinese Academy of Sciences, Beijing 100049, China |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I4210157323 |
| authorships[3].affiliations[1].raw_affiliation_string | Collaborative Innovation Center of South China Sea Studies, Nanjing 210093, China |
| authorships[3].affiliations[2].institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210160793 |
| authorships[3].affiliations[2].raw_affiliation_string | State Key Laboratory of Resources and Environmental Information Systems, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China |
| authorships[3].affiliations[3].institution_ids | https://openalex.org/I4210141657 |
| authorships[3].affiliations[3].raw_affiliation_string | Jiangsu Center for Collaborative Innovation in Geographic Information Resource Development and Application, Nanjing 210023, China |
| authorships[3].institutions[0].id | https://openalex.org/I19820366 |
| authorships[3].institutions[0].ror | https://ror.org/034t30j35 |
| authorships[3].institutions[0].type | government |
| authorships[3].institutions[0].lineage | https://openalex.org/I19820366 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Chinese Academy of Sciences |
| authorships[3].institutions[1].id | https://openalex.org/I4210160793 |
| authorships[3].institutions[1].ror | https://ror.org/04t1cdb72 |
| authorships[3].institutions[1].type | facility |
| authorships[3].institutions[1].lineage | https://openalex.org/I19820366, https://openalex.org/I4210160793 |
| authorships[3].institutions[1].country_code | CN |
| authorships[3].institutions[1].display_name | Institute of Geographic Sciences and Natural Resources Research |
| authorships[3].institutions[2].id | https://openalex.org/I4210141657 |
| authorships[3].institutions[2].ror | https://ror.org/045yewh40 |
| authorships[3].institutions[2].type | facility |
| authorships[3].institutions[2].lineage | https://openalex.org/I152031979, https://openalex.org/I4210141657 |
| authorships[3].institutions[2].country_code | CN |
| authorships[3].institutions[2].display_name | Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application |
| authorships[3].institutions[3].id | https://openalex.org/I4210157323 |
| authorships[3].institutions[3].ror | https://ror.org/04jnpk588 |
| authorships[3].institutions[3].type | facility |
| authorships[3].institutions[3].lineage | https://openalex.org/I4210157323, https://openalex.org/I90610280 |
| authorships[3].institutions[3].country_code | CN |
| authorships[3].institutions[3].display_name | South China Institute of Collaborative Innovation |
| authorships[3].institutions[4].id | https://openalex.org/I4210165038 |
| authorships[3].institutions[4].ror | https://ror.org/05qbk4x57 |
| authorships[3].institutions[4].type | education |
| authorships[3].institutions[4].lineage | https://openalex.org/I19820366, https://openalex.org/I4210165038 |
| authorships[3].institutions[4].country_code | CN |
| authorships[3].institutions[4].display_name | University of Chinese Academy of Sciences |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Weiming Cheng |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Collaborative Innovation Center of South China Sea Studies, Nanjing 210093, China, Jiangsu Center for Collaborative Innovation in Geographic Information Resource Development and Application, Nanjing 210023, China, State Key Laboratory of Resources and Environmental Information Systems, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China, University of Chinese Academy of Sciences, Beijing 100049, China |
| authorships[4].author.id | https://openalex.org/A5039171852 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-2086-4506 |
| authorships[4].author.display_name | Min Zhao |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I25254941 |
| authorships[4].affiliations[0].raw_affiliation_string | Key Laboratory of Environmental Change and Natural Disaster, Beijing Normal University, Beijing 100875, China |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I25254941 |
| authorships[4].affiliations[1].raw_affiliation_string | State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China |
| authorships[4].affiliations[2].institution_ids | https://openalex.org/I25254941 |
| authorships[4].affiliations[2].raw_affiliation_string | Center for Geodata and Analysis, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China |
| authorships[4].institutions[0].id | https://openalex.org/I25254941 |
| authorships[4].institutions[0].ror | https://ror.org/022k4wk35 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I25254941 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Beijing Normal University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Min Zhao |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Center for Geodata and Analysis, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China, Key Laboratory of Environmental Change and Natural Disaster, Beijing Normal University, Beijing 100875, China, State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China |
| authorships[5].author.id | https://openalex.org/A5058353143 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-4348-7288 |
| authorships[5].author.display_name | Luigi Lombardo |
| authorships[5].countries | NL |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I94624287 |
| authorships[5].affiliations[0].raw_affiliation_string | University of Twente, Faculty of Geo-Information Science and Earth Observation (ITC), PO Box 217, Enschede, AE 7500, Netherlands |
| authorships[5].institutions[0].id | https://openalex.org/I94624287 |
| authorships[5].institutions[0].ror | https://ror.org/006hf6230 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I94624287 |
| authorships[5].institutions[0].country_code | NL |
| authorships[5].institutions[0].display_name | University of Twente |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Luigi Lombardo |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | University of Twente, Faculty of Geo-Information Science and Earth Observation (ITC), PO Box 217, Enschede, AE 7500, Netherlands |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.gsf.2024.101800 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | On the use of explainable AI for susceptibility modeling: Examining the spatial pattern of SHAP values |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10535 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2308 |
| primary_topic.subfield.display_name | Management, Monitoring, Policy and Law |
| primary_topic.display_name | Landslides and related hazards |
| related_works | https://openalex.org/W4313320911, https://openalex.org/W4327743144, https://openalex.org/W4245077728, https://openalex.org/W2607424049, https://openalex.org/W4390922876, https://openalex.org/W3183204001, https://openalex.org/W4206302830, https://openalex.org/W2185941092, https://openalex.org/W4386782890, https://openalex.org/W3210948575 |
| cited_by_count | 50 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 38 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 12 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1016/j.gsf.2024.101800 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764860519 |
| best_oa_location.source.issn | 1674-9871, 2588-9192 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1674-9871 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Geoscience Frontiers |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Geoscience Frontiers |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.gsf.2024.101800 |
| primary_location.id | doi:10.1016/j.gsf.2024.101800 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2764860519 |
| primary_location.source.issn | 1674-9871, 2588-9192 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1674-9871 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Geoscience Frontiers |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Geoscience Frontiers |
| primary_location.landing_page_url | https://doi.org/10.1016/j.gsf.2024.101800 |
| publication_date | 2024-02-02 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W6855051355, https://openalex.org/W2789876780, https://openalex.org/W6792196385, https://openalex.org/W4293211234, https://openalex.org/W6811122941, https://openalex.org/W4362668806, https://openalex.org/W3096638284, https://openalex.org/W4213228517, https://openalex.org/W2122447387, https://openalex.org/W4281607087, https://openalex.org/W2973053290, https://openalex.org/W2751528411, https://openalex.org/W2021693202, https://openalex.org/W2026682924, https://openalex.org/W1430917188, https://openalex.org/W4321792914, https://openalex.org/W4390959482, https://openalex.org/W4226449712, https://openalex.org/W4366086142, https://openalex.org/W2113312949, https://openalex.org/W4380625099, https://openalex.org/W3195433497, https://openalex.org/W1975087542, https://openalex.org/W6856831030, https://openalex.org/W4386969082, https://openalex.org/W2806372340, https://openalex.org/W2150780222, https://openalex.org/W2082507487, https://openalex.org/W2509507403, https://openalex.org/W2063987149, https://openalex.org/W2147555471, https://openalex.org/W1988650824, https://openalex.org/W2762695789, https://openalex.org/W4322490656, https://openalex.org/W2103439198, https://openalex.org/W2989700724, https://openalex.org/W3004421885, https://openalex.org/W2606728238, https://openalex.org/W2148193050, https://openalex.org/W2955829472, https://openalex.org/W2026492654, https://openalex.org/W4283077289, https://openalex.org/W2618398196, https://openalex.org/W4283640578, https://openalex.org/W3167268177, https://openalex.org/W4292678510, https://openalex.org/W2802922558, https://openalex.org/W2901878229, https://openalex.org/W3114034888, https://openalex.org/W4285736630, https://openalex.org/W4205294557, https://openalex.org/W2955613132, https://openalex.org/W2882999202, https://openalex.org/W3047918780, https://openalex.org/W3089762765, https://openalex.org/W2618851150, https://openalex.org/W2101007820, https://openalex.org/W3032913569, https://openalex.org/W2158779733, https://openalex.org/W6790587931, https://openalex.org/W2025969570, https://openalex.org/W4318613839, https://openalex.org/W3035408474, https://openalex.org/W2136218831, https://openalex.org/W3112266021, https://openalex.org/W6848098481, https://openalex.org/W2030675529, https://openalex.org/W2114688767, https://openalex.org/W4366981465, https://openalex.org/W4367298578, https://openalex.org/W2765984599, https://openalex.org/W2793831793, https://openalex.org/W6726258750, https://openalex.org/W6809987483, https://openalex.org/W2079749103, https://openalex.org/W2133807139, https://openalex.org/W2105250188, https://openalex.org/W2619767629, https://openalex.org/W6736518430, https://openalex.org/W3036319923, https://openalex.org/W3047836639, https://openalex.org/W4366774873, https://openalex.org/W2100855757, https://openalex.org/W2129888542, https://openalex.org/W4381927585, https://openalex.org/W4283163653, https://openalex.org/W6846662733, https://openalex.org/W2028276885, https://openalex.org/W4311401368, https://openalex.org/W4385753864, https://openalex.org/W2996911859, https://openalex.org/W4221122321, https://openalex.org/W3152559597, https://openalex.org/W3207066068, https://openalex.org/W2959688306, https://openalex.org/W6786436408, https://openalex.org/W4386694527, https://openalex.org/W1987226764, https://openalex.org/W2103540160, https://openalex.org/W2082140503, https://openalex.org/W4318683761, https://openalex.org/W2766228856, https://openalex.org/W3217295232, https://openalex.org/W4206643270, https://openalex.org/W4280525102, https://openalex.org/W2914874661, https://openalex.org/W4285058206, https://openalex.org/W3108031584, https://openalex.org/W2605409611, https://openalex.org/W2071936897, https://openalex.org/W4387640237, https://openalex.org/W4229025221, https://openalex.org/W4309065909, https://openalex.org/W3136733228, https://openalex.org/W4389280505, https://openalex.org/W4312967234 |
| referenced_works_count | 116 |
| abstract_inverted_index.a | 81, 108, 146, 181, 241 |
| abstract_inverted_index.AI | 209 |
| abstract_inverted_index.In | 52, 98, 217 |
| abstract_inverted_index.We | 79 |
| abstract_inverted_index.an | 59, 161 |
| abstract_inverted_index.as | 121, 123 |
| abstract_inverted_index.at | 112, 127, 184, 199 |
| abstract_inverted_index.in | 47, 145, 224 |
| abstract_inverted_index.is | 43, 174, 191, 210 |
| abstract_inverted_index.of | 58, 70, 95, 130, 156, 187, 202, 207, 227, 244 |
| abstract_inverted_index.on | 107 |
| abstract_inverted_index.to | 26, 30, 45, 64, 170, 180, 213, 236 |
| abstract_inverted_index.we | 55, 101, 220, 232 |
| abstract_inverted_index.AUC | 142 |
| abstract_inverted_index.For | 35 |
| abstract_inverted_index.HMP | 72, 139, 228 |
| abstract_inverted_index.Our | 135 |
| abstract_inverted_index.The | 165, 204 |
| abstract_inverted_index.aid | 46 |
| abstract_inverted_index.and | 14, 32, 49, 67, 86, 152, 255 |
| abstract_inverted_index.any | 3 |
| abstract_inverted_index.are | 17 |
| abstract_inverted_index.can | 102, 239 |
| abstract_inverted_index.for | 160 |
| abstract_inverted_index.how | 113 |
| abstract_inverted_index.key | 212 |
| abstract_inverted_index.new | 242 |
| abstract_inverted_index.one | 238 |
| abstract_inverted_index.our | 27 |
| abstract_inverted_index.set | 116 |
| abstract_inverted_index.so, | 100 |
| abstract_inverted_index.the | 8, 39, 71, 75, 88, 92, 104, 114, 118, 125, 128, 131, 176, 185, 200, 211, 225, 234, 248 |
| abstract_inverted_index.use | 80 |
| abstract_inverted_index.via | 194 |
| abstract_inverted_index.0.83 | 151 |
| abstract_inverted_index.HMPs | 42 |
| abstract_inverted_index.SHAP | 96 |
| abstract_inverted_index.This | 154 |
| abstract_inverted_index.both | 215 |
| abstract_inverted_index.deep | 61, 82 |
| abstract_inverted_index.high | 188 |
| abstract_inverted_index.lead | 179 |
| abstract_inverted_index.main | 166 |
| abstract_inverted_index.pose | 23 |
| abstract_inverted_index.risk | 50, 253 |
| abstract_inverted_index.same | 126 |
| abstract_inverted_index.take | 56 |
| abstract_inverted_index.that | 175 |
| abstract_inverted_index.this | 36, 53, 218, 222 |
| abstract_inverted_index.well | 122 |
| abstract_inverted_index.with | 141, 168 |
| abstract_inverted_index.(HMP, | 2 |
| abstract_inverted_index.0.86. | 153 |
| abstract_inverted_index.clear | 182 |
| abstract_inverted_index.doing | 99, 124 |
| abstract_inverted_index.enter | 240 |
| abstract_inverted_index.flash | 15 |
| abstract_inverted_index.flows | 13 |
| abstract_inverted_index.great | 24 |
| abstract_inverted_index.level | 129, 155, 243 |
| abstract_inverted_index.local | 68 |
| abstract_inverted_index.model | 63, 89, 105, 136 |
| abstract_inverted_index.tools | 173 |
| abstract_inverted_index.unit. | 134 |
| abstract_inverted_index.which | 22, 190, 237 |
| abstract_inverted_index.whole | 76 |
| abstract_inverted_index.work, | 54, 219 |
| abstract_inverted_index.across | 74 |
| abstract_inverted_index.basis, | 110 |
| abstract_inverted_index.behind | 41, 251 |
| abstract_inverted_index.debris | 12 |
| abstract_inverted_index.extent | 235 |
| abstract_inverted_index.global | 66 |
| abstract_inverted_index.hazard | 48 |
| abstract_inverted_index.latter | 177 |
| abstract_inverted_index.needed | 44 |
| abstract_inverted_index.neural | 83 |
| abstract_inverted_index.recent | 205 |
| abstract_inverted_index.single | 132 |
| abstract_inverted_index.skill. | 164 |
| abstract_inverted_index.though | 198 |
| abstract_inverted_index.values | 143 |
| abstract_inverted_index.within | 7 |
| abstract_inverted_index.Chinese | 77 |
| abstract_inverted_index.attests | 159 |
| abstract_inverted_index.between | 11, 150 |
| abstract_inverted_index.combine | 214 |
| abstract_inverted_index.context | 226 |
| abstract_inverted_index.defined | 10 |
| abstract_inverted_index.expense | 186, 201 |
| abstract_inverted_index.explore | 221 |
| abstract_inverted_index.extract | 65 |
| abstract_inverted_index.floods) | 16 |
| abstract_inverted_index.hazards | 21 |
| abstract_inverted_index.leading | 29 |
| abstract_inverted_index.looking | 111 |
| abstract_inverted_index.losses. | 34 |
| abstract_inverted_index.mapping | 133 |
| abstract_inverted_index.natural | 4, 20 |
| abstract_inverted_index.network | 84 |
| abstract_inverted_index.overall | 119 |
| abstract_inverted_index.pattern | 94 |
| abstract_inverted_index.process | 250 |
| abstract_inverted_index.ranging | 149 |
| abstract_inverted_index.reached | 193 |
| abstract_inverted_index.reason, | 37 |
| abstract_inverted_index.respect | 169 |
| abstract_inverted_index.results | 90 |
| abstract_inverted_index.spatial | 93 |
| abstract_inverted_index.threats | 25 |
| abstract_inverted_index.through | 91 |
| abstract_inverted_index.usually | 178 |
| abstract_inverted_index.values. | 97 |
| abstract_inverted_index.actions. | 257 |
| abstract_inverted_index.controls | 117 |
| abstract_inverted_index.disaster | 252 |
| abstract_inverted_index.dynamics | 40 |
| abstract_inverted_index.globally | 18 |
| abstract_inverted_index.learning | 62, 196 |
| abstract_inverted_index.measured | 144 |
| abstract_inverted_index.predicts | 138 |
| abstract_inverted_index.society, | 28 |
| abstract_inverted_index.spectrum | 9 |
| abstract_inverted_index.ten-fold | 147 |
| abstract_inverted_index.advantage | 57 |
| abstract_inverted_index.contained | 6 |
| abstract_inverted_index.excellent | 162 |
| abstract_inverted_index.interpret | 87 |
| abstract_inverted_index.modeling. | 230 |
| abstract_inverted_index.occurring | 19 |
| abstract_inverted_index.otherwise | 192 |
| abstract_inverted_index.predictor | 115 |
| abstract_inverted_index.processes | 1 |
| abstract_inverted_index.accurately | 137 |
| abstract_inverted_index.difference | 167 |
| abstract_inverted_index.economical | 33 |
| abstract_inverted_index.fatalities | 31 |
| abstract_inverted_index.mitigation | 254 |
| abstract_inverted_index.phenomenon | 5 |
| abstract_inverted_index.prediction | 106, 163 |
| abstract_inverted_index.predictive | 157 |
| abstract_inverted_index.prevention | 256 |
| abstract_inverted_index.solutions, | 197 |
| abstract_inverted_index.strengths. | 216 |
| abstract_inverted_index.supporting | 247 |
| abstract_inverted_index.territory. | 78 |
| abstract_inverted_index.understand | 103 |
| abstract_inverted_index.assessment. | 51 |
| abstract_inverted_index.combination | 223 |
| abstract_inverted_index.data-driven | 245 |
| abstract_inverted_index.demonstrate | 233 |
| abstract_inverted_index.development | 206 |
| abstract_inverted_index.explainable | 60, 208 |
| abstract_inverted_index.occurrences | 73, 140 |
| abstract_inverted_index.performance | 158 |
| abstract_inverted_index.statistical | 172 |
| abstract_inverted_index.traditional | 171 |
| abstract_inverted_index.architecture | 85 |
| abstract_inverted_index.hierarchical | 109 |
| abstract_inverted_index.machine/deep | 195 |
| abstract_inverted_index.performance, | 189 |
| abstract_inverted_index.Specifically, | 231 |
| abstract_inverted_index.understanding | 38 |
| abstract_inverted_index.interpretation | 183 |
| abstract_inverted_index.susceptibility | 120, 229 |
| abstract_inverted_index.decision-making | 249 |
| abstract_inverted_index.interpretation, | 246 |
| abstract_inverted_index.interpretation. | 203 |
| abstract_inverted_index.interpretations | 69 |
| abstract_inverted_index.cross-validation | 148 |
| abstract_inverted_index.Hydro-morphological | 0 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 99 |
| corresponding_author_ids | https://openalex.org/A5100620917 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 6 |
| corresponding_institution_ids | https://openalex.org/I184983240 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[0].score | 0.41999998688697815 |
| sustainable_development_goals[0].display_name | Reduced inequalities |
| citation_normalized_percentile.value | 0.99919177 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |