On the Use of Heterogeneous Graph Neural Networks for Detecting Malicious Activities: a Case Study with Cryptocurrencies Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1145/3677117.3685009
This paper presents a study on the application of Heterogeneous Graph Neural Networks (HGNNs) for enhancing the security of complex social systems by identifying illicit and malicious behaviors. We focus on digital asset tokenization, a key component in the construction of many innovative social services, with the aim of classifying token exchanges and identifying illicit activities. Utilizing the Elliptic++ dataset, we demonstrate the efficacy of HGNNs in identifying illicit activities in token-based exchanging applications. In particular, we evaluate four different HGNN architectures, i.e. Heterogeneous GAT, Heterogeneous SAGE, HGT (Heterogeneous Graph Transformer), and HAN (Heterogeneous Attention Network). Our results underscore the importance of characterizing and describing interactions in these complex systems, both for studying the system dynamics and for activating mechanisms to cope with cybersecurity issues, like misuses and usurpation of resources in social systems.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1145/3677117.3685009
- OA Status
- gold
- Cited By
- 2
- References
- 17
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4401837637
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4401837637Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1145/3677117.3685009Digital Object Identifier
- Title
-
On the Use of Heterogeneous Graph Neural Networks for Detecting Malicious Activities: a Case Study with CryptocurrenciesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-08-24Full publication date if available
- Authors
-
Stefano Ferretti, Gabriele D’Angelo, Vittorio GhiniList of authors in order
- Landing page
-
https://doi.org/10.1145/3677117.3685009Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1145/3677117.3685009Direct OA link when available
- Concepts
-
Cryptocurrency, Computer science, Graph, Artificial neural network, Artificial intelligence, Theoretical computer science, Computer security, Machine learningTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2Per-year citation counts (last 5 years)
- References (count)
-
17Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4401837637 |
|---|---|
| doi | https://doi.org/10.1145/3677117.3685009 |
| ids.doi | https://doi.org/10.1145/3677117.3685009 |
| ids.openalex | https://openalex.org/W4401837637 |
| fwci | 1.6737322 |
| type | article |
| title | On the Use of Heterogeneous Graph Neural Networks for Detecting Malicious Activities: a Case Study with Cryptocurrencies |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 40 |
| biblio.first_page | 33 |
| topics[0].id | https://openalex.org/T10400 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.993399977684021 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1705 |
| topics[0].subfield.display_name | Computer Networks and Communications |
| topics[0].display_name | Network Security and Intrusion Detection |
| topics[1].id | https://openalex.org/T10064 |
| topics[1].field.id | https://openalex.org/fields/31 |
| topics[1].field.display_name | Physics and Astronomy |
| topics[1].score | 0.9916999936103821 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3109 |
| topics[1].subfield.display_name | Statistical and Nonlinear Physics |
| topics[1].display_name | Complex Network Analysis Techniques |
| topics[2].id | https://openalex.org/T11512 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9760000109672546 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Anomaly Detection Techniques and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C180706569 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8648687601089478 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q13479982 |
| concepts[0].display_name | Cryptocurrency |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7652174830436707 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C132525143 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5253381729125977 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[2].display_name | Graph |
| concepts[3].id | https://openalex.org/C50644808 |
| concepts[3].level | 2 |
| concepts[3].score | 0.433931827545166 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[3].display_name | Artificial neural network |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.40095803141593933 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C80444323 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3936089873313904 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[5].display_name | Theoretical computer science |
| concepts[6].id | https://openalex.org/C38652104 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3601437211036682 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[6].display_name | Computer security |
| concepts[7].id | https://openalex.org/C119857082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.33466464281082153 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[7].display_name | Machine learning |
| keywords[0].id | https://openalex.org/keywords/cryptocurrency |
| keywords[0].score | 0.8648687601089478 |
| keywords[0].display_name | Cryptocurrency |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7652174830436707 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/graph |
| keywords[2].score | 0.5253381729125977 |
| keywords[2].display_name | Graph |
| keywords[3].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[3].score | 0.433931827545166 |
| keywords[3].display_name | Artificial neural network |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.40095803141593933 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[5].score | 0.3936089873313904 |
| keywords[5].display_name | Theoretical computer science |
| keywords[6].id | https://openalex.org/keywords/computer-security |
| keywords[6].score | 0.3601437211036682 |
| keywords[6].display_name | Computer security |
| keywords[7].id | https://openalex.org/keywords/machine-learning |
| keywords[7].score | 0.33466464281082153 |
| keywords[7].display_name | Machine learning |
| language | en |
| locations[0].id | doi:10.1145/3677117.3685009 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | 4th International Workshop on OPEN CHALLENGES IN ONLINE SOCIAL NETWORKS |
| locations[0].landing_page_url | https://doi.org/10.1145/3677117.3685009 |
| locations[1].id | pmh:oai:cris.unibo.it:11585/999374 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306402579 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Archivio istituzionale della ricerca (Alma Mater Studiorum Università di Bologna) |
| locations[1].source.host_organization | https://openalex.org/I4210117483 |
| locations[1].source.host_organization_name | Istituto di Ematologia di Bologna |
| locations[1].source.host_organization_lineage | https://openalex.org/I4210117483 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | info:eu-repo/semantics/conferenceObject |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://dl.acm.org/doi/10.1145/3677117.3685009 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5075197029 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1911-4708 |
| authorships[0].author.display_name | Stefano Ferretti |
| authorships[0].countries | IT |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I190397597 |
| authorships[0].affiliations[0].raw_affiliation_string | University of Urbino, Italy |
| authorships[0].institutions[0].id | https://openalex.org/I190397597 |
| authorships[0].institutions[0].ror | https://ror.org/04q4kt073 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I190397597 |
| authorships[0].institutions[0].country_code | IT |
| authorships[0].institutions[0].display_name | University of Urbino |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Stefano Ferretti |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | University of Urbino, Italy |
| authorships[1].author.id | https://openalex.org/A5108167047 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3690-6651 |
| authorships[1].author.display_name | Gabriele D’Angelo |
| authorships[1].countries | IT |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I9360294 |
| authorships[1].affiliations[0].raw_affiliation_string | University of Bologna, Italy |
| authorships[1].institutions[0].id | https://openalex.org/I9360294 |
| authorships[1].institutions[0].ror | https://ror.org/01111rn36 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I9360294 |
| authorships[1].institutions[0].country_code | IT |
| authorships[1].institutions[0].display_name | University of Bologna |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Gabriele D'Angelo |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | University of Bologna, Italy |
| authorships[2].author.id | https://openalex.org/A5048677622 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-2814-9857 |
| authorships[2].author.display_name | Vittorio Ghini |
| authorships[2].countries | IT |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I9360294 |
| authorships[2].affiliations[0].raw_affiliation_string | University of Bologna, Italy |
| authorships[2].institutions[0].id | https://openalex.org/I9360294 |
| authorships[2].institutions[0].ror | https://ror.org/01111rn36 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I9360294 |
| authorships[2].institutions[0].country_code | IT |
| authorships[2].institutions[0].display_name | University of Bologna |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Vittorio Ghini |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | University of Bologna, Italy |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1145/3677117.3685009 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-08-24T00:00:00 |
| display_name | On the Use of Heterogeneous Graph Neural Networks for Detecting Malicious Activities: a Case Study with Cryptocurrencies |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10400 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.993399977684021 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1705 |
| primary_topic.subfield.display_name | Computer Networks and Communications |
| primary_topic.display_name | Network Security and Intrusion Detection |
| related_works | https://openalex.org/W4366411693, https://openalex.org/W3211641817, https://openalex.org/W3164717803, https://openalex.org/W4389915954, https://openalex.org/W3123387860, https://openalex.org/W4291291739, https://openalex.org/W2915579847, https://openalex.org/W3110645133, https://openalex.org/W4321377877, https://openalex.org/W4394604524 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1145/3677117.3685009 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | 4th International Workshop on OPEN CHALLENGES IN ONLINE SOCIAL NETWORKS |
| best_oa_location.landing_page_url | https://doi.org/10.1145/3677117.3685009 |
| primary_location.id | doi:10.1145/3677117.3685009 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | 4th International Workshop on OPEN CHALLENGES IN ONLINE SOCIAL NETWORKS |
| primary_location.landing_page_url | https://doi.org/10.1145/3677117.3685009 |
| publication_date | 2024-08-24 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2124637492, https://openalex.org/W4312106615, https://openalex.org/W4399418872, https://openalex.org/W4380551105, https://openalex.org/W2343744505, https://openalex.org/W3012871709, https://openalex.org/W3120272087, https://openalex.org/W4319780432, https://openalex.org/W4385271144, https://openalex.org/W2911286998, https://openalex.org/W4213086502, https://openalex.org/W2965857891, https://openalex.org/W3166592993, https://openalex.org/W6600916892, https://openalex.org/W4236010239, https://openalex.org/W4401767337, https://openalex.org/W4234782080 |
| referenced_works_count | 17 |
| abstract_inverted_index.a | 3, 34 |
| abstract_inverted_index.In | 74 |
| abstract_inverted_index.We | 28 |
| abstract_inverted_index.by | 22 |
| abstract_inverted_index.in | 37, 66, 70, 106, 131 |
| abstract_inverted_index.of | 8, 18, 40, 48, 64, 101, 129 |
| abstract_inverted_index.on | 5, 30 |
| abstract_inverted_index.to | 120 |
| abstract_inverted_index.we | 60, 76 |
| abstract_inverted_index.HAN | 92 |
| abstract_inverted_index.HGT | 87 |
| abstract_inverted_index.Our | 96 |
| abstract_inverted_index.aim | 47 |
| abstract_inverted_index.and | 25, 52, 91, 103, 116, 127 |
| abstract_inverted_index.for | 14, 111, 117 |
| abstract_inverted_index.key | 35 |
| abstract_inverted_index.the | 6, 16, 38, 46, 57, 62, 99, 113 |
| abstract_inverted_index.GAT, | 84 |
| abstract_inverted_index.HGNN | 80 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.both | 110 |
| abstract_inverted_index.cope | 121 |
| abstract_inverted_index.four | 78 |
| abstract_inverted_index.i.e. | 82 |
| abstract_inverted_index.like | 125 |
| abstract_inverted_index.many | 41 |
| abstract_inverted_index.with | 45, 122 |
| abstract_inverted_index.Graph | 10, 89 |
| abstract_inverted_index.HGNNs | 65 |
| abstract_inverted_index.SAGE, | 86 |
| abstract_inverted_index.asset | 32 |
| abstract_inverted_index.focus | 29 |
| abstract_inverted_index.paper | 1 |
| abstract_inverted_index.study | 4 |
| abstract_inverted_index.these | 107 |
| abstract_inverted_index.token | 50 |
| abstract_inverted_index.Neural | 11 |
| abstract_inverted_index.social | 20, 43, 132 |
| abstract_inverted_index.system | 114 |
| abstract_inverted_index.(HGNNs) | 13 |
| abstract_inverted_index.complex | 19, 108 |
| abstract_inverted_index.digital | 31 |
| abstract_inverted_index.illicit | 24, 54, 68 |
| abstract_inverted_index.issues, | 124 |
| abstract_inverted_index.misuses | 126 |
| abstract_inverted_index.results | 97 |
| abstract_inverted_index.systems | 21 |
| abstract_inverted_index.Networks | 12 |
| abstract_inverted_index.dataset, | 59 |
| abstract_inverted_index.dynamics | 115 |
| abstract_inverted_index.efficacy | 63 |
| abstract_inverted_index.evaluate | 77 |
| abstract_inverted_index.presents | 2 |
| abstract_inverted_index.security | 17 |
| abstract_inverted_index.studying | 112 |
| abstract_inverted_index.systems, | 109 |
| abstract_inverted_index.systems. | 133 |
| abstract_inverted_index.Attention | 94 |
| abstract_inverted_index.Network). | 95 |
| abstract_inverted_index.Utilizing | 56 |
| abstract_inverted_index.component | 36 |
| abstract_inverted_index.different | 79 |
| abstract_inverted_index.enhancing | 15 |
| abstract_inverted_index.exchanges | 51 |
| abstract_inverted_index.malicious | 26 |
| abstract_inverted_index.resources | 130 |
| abstract_inverted_index.services, | 44 |
| abstract_inverted_index.Elliptic++ | 58 |
| abstract_inverted_index.activating | 118 |
| abstract_inverted_index.activities | 69 |
| abstract_inverted_index.behaviors. | 27 |
| abstract_inverted_index.describing | 104 |
| abstract_inverted_index.exchanging | 72 |
| abstract_inverted_index.importance | 100 |
| abstract_inverted_index.innovative | 42 |
| abstract_inverted_index.mechanisms | 119 |
| abstract_inverted_index.underscore | 98 |
| abstract_inverted_index.usurpation | 128 |
| abstract_inverted_index.activities. | 55 |
| abstract_inverted_index.application | 7 |
| abstract_inverted_index.classifying | 49 |
| abstract_inverted_index.demonstrate | 61 |
| abstract_inverted_index.identifying | 23, 53, 67 |
| abstract_inverted_index.particular, | 75 |
| abstract_inverted_index.token-based | 71 |
| abstract_inverted_index.construction | 39 |
| abstract_inverted_index.interactions | 105 |
| abstract_inverted_index.Heterogeneous | 9, 83, 85 |
| abstract_inverted_index.Transformer), | 90 |
| abstract_inverted_index.applications. | 73 |
| abstract_inverted_index.cybersecurity | 123 |
| abstract_inverted_index.tokenization, | 33 |
| abstract_inverted_index.(Heterogeneous | 88, 93 |
| abstract_inverted_index.architectures, | 81 |
| abstract_inverted_index.characterizing | 102 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 95 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.77081557 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |