On unsupervised projections and second order signals Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2204.05139
Linear projections are widely used in the analysis of high-dimensional data. In unsupervised settings where the data harbour latent classes/clusters, the question of whether class discriminatory signals are retained under projection is crucial. In the case of mean differences between classes, this question has been well studied. However, in many contemporary applications, notably in biomedicine, group differences at the level of covariance or graphical model structure are important. Motivated by such applications, in this paper we ask whether linear projections can preserve differences in second order structure between latent groups. We focus on unsupervised projections, which can be computed without knowledge of class labels. We discuss a simple theoretical framework to study the behaviour of such projections which we use to inform an analysis via quasi-exhaustive enumeration. This allows us to consider the performance, over more than a hundred thousand sets of data-generating population parameters, of two popular projections, namely random projections (RP) and Principal Component Analysis (PCA). Across this broad range of regimes, PCA turns out to be more effective at retaining second order signals than RP and is often even competitive with supervised projection. We complement these results with fully empirical experiments showing 0-1 loss using simulated and real data. We study also the effect of projection dimension, drawing attention to a bias-variance trade-off in this respect. Our results show that PCA can indeed be a suitable first-step for unsupervised analysis, including in cases where differential covariance or graphical model structure are of interest.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2204.05139
- https://arxiv.org/pdf/2204.05139
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4223630185
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4223630185Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2204.05139Digital Object Identifier
- Title
-
On unsupervised projections and second order signalsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-04-11Full publication date if available
- Authors
-
Thomas Lartigue, Sach MukherjeeList of authors in order
- Landing page
-
https://arxiv.org/abs/2204.05139Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2204.05139Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2204.05139Direct OA link when available
- Concepts
-
Principal component analysis, Projection (relational algebra), Covariance, Artificial intelligence, Pattern recognition (psychology), Complement (music), Computer science, Dimension (graph theory), Mathematics, Population, Machine learning, Statistics, Algorithm, Gene, Pure mathematics, Sociology, Chemistry, Biochemistry, Complementation, Demography, PhenotypeTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4223630185 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2204.05139 |
| ids.doi | https://doi.org/10.48550/arxiv.2204.05139 |
| ids.openalex | https://openalex.org/W4223630185 |
| fwci | |
| type | preprint |
| title | On unsupervised projections and second order signals |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11901 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9929999709129333 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Bayesian Methods and Mixture Models |
| topics[1].id | https://openalex.org/T11447 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9843000173568726 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1711 |
| topics[1].subfield.display_name | Signal Processing |
| topics[1].display_name | Blind Source Separation Techniques |
| topics[2].id | https://openalex.org/T10057 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9782000184059143 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Face and Expression Recognition |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C27438332 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6360471844673157 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2873 |
| concepts[0].display_name | Principal component analysis |
| concepts[1].id | https://openalex.org/C57493831 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6212530136108398 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q3134666 |
| concepts[1].display_name | Projection (relational algebra) |
| concepts[2].id | https://openalex.org/C178650346 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5999727845191956 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q201984 |
| concepts[2].display_name | Covariance |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5454859733581543 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C153180895 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5086404085159302 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[4].display_name | Pattern recognition (psychology) |
| concepts[5].id | https://openalex.org/C112313634 |
| concepts[5].level | 5 |
| concepts[5].score | 0.5036081671714783 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7886648 |
| concepts[5].display_name | Complement (music) |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.4960509240627289 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C33676613 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4852735698223114 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q13415176 |
| concepts[7].display_name | Dimension (graph theory) |
| concepts[8].id | https://openalex.org/C33923547 |
| concepts[8].level | 0 |
| concepts[8].score | 0.4482715427875519 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[8].display_name | Mathematics |
| concepts[9].id | https://openalex.org/C2908647359 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4318506717681885 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2625603 |
| concepts[9].display_name | Population |
| concepts[10].id | https://openalex.org/C119857082 |
| concepts[10].level | 1 |
| concepts[10].score | 0.34483784437179565 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[10].display_name | Machine learning |
| concepts[11].id | https://openalex.org/C105795698 |
| concepts[11].level | 1 |
| concepts[11].score | 0.26925280690193176 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[11].display_name | Statistics |
| concepts[12].id | https://openalex.org/C11413529 |
| concepts[12].level | 1 |
| concepts[12].score | 0.2544592022895813 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[12].display_name | Algorithm |
| concepts[13].id | https://openalex.org/C104317684 |
| concepts[13].level | 2 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[13].display_name | Gene |
| concepts[14].id | https://openalex.org/C202444582 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[14].display_name | Pure mathematics |
| concepts[15].id | https://openalex.org/C144024400 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q21201 |
| concepts[15].display_name | Sociology |
| concepts[16].id | https://openalex.org/C185592680 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[16].display_name | Chemistry |
| concepts[17].id | https://openalex.org/C55493867 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[17].display_name | Biochemistry |
| concepts[18].id | https://openalex.org/C188082640 |
| concepts[18].level | 4 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q1780899 |
| concepts[18].display_name | Complementation |
| concepts[19].id | https://openalex.org/C149923435 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q37732 |
| concepts[19].display_name | Demography |
| concepts[20].id | https://openalex.org/C127716648 |
| concepts[20].level | 3 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q104053 |
| concepts[20].display_name | Phenotype |
| keywords[0].id | https://openalex.org/keywords/principal-component-analysis |
| keywords[0].score | 0.6360471844673157 |
| keywords[0].display_name | Principal component analysis |
| keywords[1].id | https://openalex.org/keywords/projection |
| keywords[1].score | 0.6212530136108398 |
| keywords[1].display_name | Projection (relational algebra) |
| keywords[2].id | https://openalex.org/keywords/covariance |
| keywords[2].score | 0.5999727845191956 |
| keywords[2].display_name | Covariance |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.5454859733581543 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/pattern-recognition |
| keywords[4].score | 0.5086404085159302 |
| keywords[4].display_name | Pattern recognition (psychology) |
| keywords[5].id | https://openalex.org/keywords/complement |
| keywords[5].score | 0.5036081671714783 |
| keywords[5].display_name | Complement (music) |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.4960509240627289 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/dimension |
| keywords[7].score | 0.4852735698223114 |
| keywords[7].display_name | Dimension (graph theory) |
| keywords[8].id | https://openalex.org/keywords/mathematics |
| keywords[8].score | 0.4482715427875519 |
| keywords[8].display_name | Mathematics |
| keywords[9].id | https://openalex.org/keywords/population |
| keywords[9].score | 0.4318506717681885 |
| keywords[9].display_name | Population |
| keywords[10].id | https://openalex.org/keywords/machine-learning |
| keywords[10].score | 0.34483784437179565 |
| keywords[10].display_name | Machine learning |
| keywords[11].id | https://openalex.org/keywords/statistics |
| keywords[11].score | 0.26925280690193176 |
| keywords[11].display_name | Statistics |
| keywords[12].id | https://openalex.org/keywords/algorithm |
| keywords[12].score | 0.2544592022895813 |
| keywords[12].display_name | Algorithm |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2204.05139 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2204.05139 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2204.05139 |
| locations[1].id | doi:10.48550/arxiv.2204.05139 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2204.05139 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5053118613 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7820-0032 |
| authorships[0].author.display_name | Thomas Lartigue |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Lartigue, Thomas |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5112866063 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Sach Mukherjee |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Mukherjee, Sach |
| authorships[1].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2204.05139 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | On unsupervised projections and second order signals |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11901 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9929999709129333 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Bayesian Methods and Mixture Models |
| related_works | https://openalex.org/W1975632186, https://openalex.org/W3027745756, https://openalex.org/W3205213561, https://openalex.org/W2531880140, https://openalex.org/W2126145365, https://openalex.org/W2036609560, https://openalex.org/W346861917, https://openalex.org/W3024018414, https://openalex.org/W1542592062, https://openalex.org/W3000541886 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2204.05139 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2204.05139 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2204.05139 |
| primary_location.id | pmh:oai:arXiv.org:2204.05139 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2204.05139 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2204.05139 |
| publication_date | 2022-04-11 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 106, 137, 213, 227 |
| abstract_inverted_index.In | 11, 33 |
| abstract_inverted_index.RP | 177 |
| abstract_inverted_index.We | 90, 104, 186, 202 |
| abstract_inverted_index.an | 122 |
| abstract_inverted_index.at | 57, 171 |
| abstract_inverted_index.be | 97, 168, 226 |
| abstract_inverted_index.by | 69 |
| abstract_inverted_index.in | 5, 48, 53, 72, 83, 216, 234 |
| abstract_inverted_index.is | 31, 179 |
| abstract_inverted_index.of | 8, 22, 36, 60, 101, 114, 141, 145, 162, 207, 244 |
| abstract_inverted_index.on | 92 |
| abstract_inverted_index.or | 62, 239 |
| abstract_inverted_index.to | 110, 120, 130, 167, 212 |
| abstract_inverted_index.us | 129 |
| abstract_inverted_index.we | 75, 118 |
| abstract_inverted_index.0-1 | 195 |
| abstract_inverted_index.Our | 219 |
| abstract_inverted_index.PCA | 164, 223 |
| abstract_inverted_index.and | 153, 178, 199 |
| abstract_inverted_index.are | 2, 27, 66, 243 |
| abstract_inverted_index.ask | 76 |
| abstract_inverted_index.can | 80, 96, 224 |
| abstract_inverted_index.for | 230 |
| abstract_inverted_index.has | 43 |
| abstract_inverted_index.out | 166 |
| abstract_inverted_index.the | 6, 15, 20, 34, 58, 112, 132, 205 |
| abstract_inverted_index.two | 146 |
| abstract_inverted_index.use | 119 |
| abstract_inverted_index.via | 124 |
| abstract_inverted_index.(RP) | 152 |
| abstract_inverted_index.This | 127 |
| abstract_inverted_index.also | 204 |
| abstract_inverted_index.been | 44 |
| abstract_inverted_index.case | 35 |
| abstract_inverted_index.data | 16 |
| abstract_inverted_index.even | 181 |
| abstract_inverted_index.loss | 196 |
| abstract_inverted_index.many | 49 |
| abstract_inverted_index.mean | 37 |
| abstract_inverted_index.more | 135, 169 |
| abstract_inverted_index.over | 134 |
| abstract_inverted_index.real | 200 |
| abstract_inverted_index.sets | 140 |
| abstract_inverted_index.show | 221 |
| abstract_inverted_index.such | 70, 115 |
| abstract_inverted_index.than | 136, 176 |
| abstract_inverted_index.that | 222 |
| abstract_inverted_index.this | 41, 73, 159, 217 |
| abstract_inverted_index.used | 4 |
| abstract_inverted_index.well | 45 |
| abstract_inverted_index.with | 183, 190 |
| abstract_inverted_index.broad | 160 |
| abstract_inverted_index.cases | 235 |
| abstract_inverted_index.class | 24, 102 |
| abstract_inverted_index.data. | 10, 201 |
| abstract_inverted_index.focus | 91 |
| abstract_inverted_index.fully | 191 |
| abstract_inverted_index.group | 55 |
| abstract_inverted_index.level | 59 |
| abstract_inverted_index.model | 64, 241 |
| abstract_inverted_index.often | 180 |
| abstract_inverted_index.order | 85, 174 |
| abstract_inverted_index.paper | 74 |
| abstract_inverted_index.range | 161 |
| abstract_inverted_index.study | 111, 203 |
| abstract_inverted_index.these | 188 |
| abstract_inverted_index.turns | 165 |
| abstract_inverted_index.under | 29 |
| abstract_inverted_index.using | 197 |
| abstract_inverted_index.where | 14, 236 |
| abstract_inverted_index.which | 95, 117 |
| abstract_inverted_index.(PCA). | 157 |
| abstract_inverted_index.Across | 158 |
| abstract_inverted_index.Linear | 0 |
| abstract_inverted_index.allows | 128 |
| abstract_inverted_index.effect | 206 |
| abstract_inverted_index.indeed | 225 |
| abstract_inverted_index.inform | 121 |
| abstract_inverted_index.latent | 18, 88 |
| abstract_inverted_index.linear | 78 |
| abstract_inverted_index.namely | 149 |
| abstract_inverted_index.random | 150 |
| abstract_inverted_index.second | 84, 173 |
| abstract_inverted_index.simple | 107 |
| abstract_inverted_index.widely | 3 |
| abstract_inverted_index.between | 39, 87 |
| abstract_inverted_index.discuss | 105 |
| abstract_inverted_index.drawing | 210 |
| abstract_inverted_index.groups. | 89 |
| abstract_inverted_index.harbour | 17 |
| abstract_inverted_index.hundred | 138 |
| abstract_inverted_index.labels. | 103 |
| abstract_inverted_index.notably | 52 |
| abstract_inverted_index.popular | 147 |
| abstract_inverted_index.results | 189, 220 |
| abstract_inverted_index.showing | 194 |
| abstract_inverted_index.signals | 26, 175 |
| abstract_inverted_index.whether | 23, 77 |
| abstract_inverted_index.without | 99 |
| abstract_inverted_index.Analysis | 156 |
| abstract_inverted_index.However, | 47 |
| abstract_inverted_index.analysis | 7, 123 |
| abstract_inverted_index.classes, | 40 |
| abstract_inverted_index.computed | 98 |
| abstract_inverted_index.consider | 131 |
| abstract_inverted_index.crucial. | 32 |
| abstract_inverted_index.preserve | 81 |
| abstract_inverted_index.question | 21, 42 |
| abstract_inverted_index.regimes, | 163 |
| abstract_inverted_index.respect. | 218 |
| abstract_inverted_index.retained | 28 |
| abstract_inverted_index.settings | 13 |
| abstract_inverted_index.studied. | 46 |
| abstract_inverted_index.suitable | 228 |
| abstract_inverted_index.thousand | 139 |
| abstract_inverted_index.Component | 155 |
| abstract_inverted_index.Motivated | 68 |
| abstract_inverted_index.Principal | 154 |
| abstract_inverted_index.analysis, | 232 |
| abstract_inverted_index.attention | 211 |
| abstract_inverted_index.behaviour | 113 |
| abstract_inverted_index.effective | 170 |
| abstract_inverted_index.empirical | 192 |
| abstract_inverted_index.framework | 109 |
| abstract_inverted_index.graphical | 63, 240 |
| abstract_inverted_index.including | 233 |
| abstract_inverted_index.interest. | 245 |
| abstract_inverted_index.knowledge | 100 |
| abstract_inverted_index.retaining | 172 |
| abstract_inverted_index.simulated | 198 |
| abstract_inverted_index.structure | 65, 86, 242 |
| abstract_inverted_index.trade-off | 215 |
| abstract_inverted_index.complement | 187 |
| abstract_inverted_index.covariance | 61, 238 |
| abstract_inverted_index.dimension, | 209 |
| abstract_inverted_index.first-step | 229 |
| abstract_inverted_index.important. | 67 |
| abstract_inverted_index.population | 143 |
| abstract_inverted_index.projection | 30, 208 |
| abstract_inverted_index.supervised | 184 |
| abstract_inverted_index.competitive | 182 |
| abstract_inverted_index.differences | 38, 56, 82 |
| abstract_inverted_index.experiments | 193 |
| abstract_inverted_index.parameters, | 144 |
| abstract_inverted_index.projection. | 185 |
| abstract_inverted_index.projections | 1, 79, 116, 151 |
| abstract_inverted_index.theoretical | 108 |
| abstract_inverted_index.biomedicine, | 54 |
| abstract_inverted_index.contemporary | 50 |
| abstract_inverted_index.differential | 237 |
| abstract_inverted_index.enumeration. | 126 |
| abstract_inverted_index.performance, | 133 |
| abstract_inverted_index.projections, | 94, 148 |
| abstract_inverted_index.unsupervised | 12, 93, 231 |
| abstract_inverted_index.applications, | 51, 71 |
| abstract_inverted_index.bias-variance | 214 |
| abstract_inverted_index.discriminatory | 25 |
| abstract_inverted_index.data-generating | 142 |
| abstract_inverted_index.high-dimensional | 9 |
| abstract_inverted_index.quasi-exhaustive | 125 |
| abstract_inverted_index.classes/clusters, | 19 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[0].score | 0.7400000095367432 |
| sustainable_development_goals[0].display_name | Reduced inequalities |
| citation_normalized_percentile |