One-Class Learning for AI-Generated Essay Detection Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.3390/app13137901
Detection of AI-generated content is a crucially important task considering the increasing attention towards AI tools, such as ChatGPT, and the raised concerns with regard to academic integrity. Existing text classification approaches, including neural-network-based and feature-based methods, are mostly tailored for English data, and they are typically limited to a supervised learning setting. Although one-class learning methods are more suitable for classification tasks, their effectiveness in essay detection is still unknown. In this paper, this gap is explored by adopting linguistic features and one-class learning models for AI-generated essay detection. Detection performance of different models is assessed in different settings, where positively labeled data, i.e., AI-generated essays, are unavailable for model training. Results with two datasets containing essays in L2 English and L2 Spanish show that it is feasible to accurately detect AI-generated essays. The analysis reveals which models and which sets of linguistic features are more powerful than others in the detection task.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/app13137901
- OA Status
- gold
- Cited By
- 13
- References
- 46
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4383376720
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4383376720Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/app13137901Digital Object Identifier
- Title
-
One-Class Learning for AI-Generated Essay DetectionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-07-05Full publication date if available
- Authors
-
Roberto Corizzo, Sebastian Leal-ArenasList of authors in order
- Landing page
-
https://doi.org/10.3390/app13137901Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.3390/app13137901Direct OA link when available
- Concepts
-
Artificial intelligence, Computer science, Task (project management), Class (philosophy), Machine learning, Natural language processing, Engineering, Systems engineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
13Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 5, 2024: 7, 2023: 1Per-year citation counts (last 5 years)
- References (count)
-
46Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4383376720 |
|---|---|
| doi | https://doi.org/10.3390/app13137901 |
| ids.doi | https://doi.org/10.3390/app13137901 |
| ids.openalex | https://openalex.org/W4383376720 |
| fwci | 3.32075754 |
| type | article |
| title | One-Class Learning for AI-Generated Essay Detection |
| biblio.issue | 13 |
| biblio.volume | 13 |
| biblio.last_page | 7901 |
| biblio.first_page | 7901 |
| topics[0].id | https://openalex.org/T10028 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9993000030517578 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Topic Modeling |
| topics[1].id | https://openalex.org/T13629 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9919999837875366 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Text Readability and Simplification |
| topics[2].id | https://openalex.org/T10181 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9878000020980835 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Natural Language Processing Techniques |
| is_xpac | False |
| apc_list.value | 2300 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2490 |
| apc_paid.value | 2300 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2490 |
| concepts[0].id | https://openalex.org/C154945302 |
| concepts[0].level | 1 |
| concepts[0].score | 0.6888697743415833 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[0].display_name | Artificial intelligence |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.669823944568634 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C2780451532 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5736522674560547 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[2].display_name | Task (project management) |
| concepts[3].id | https://openalex.org/C2777212361 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5716440081596375 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q5127848 |
| concepts[3].display_name | Class (philosophy) |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5388194918632507 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| concepts[5].id | https://openalex.org/C204321447 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5081515312194824 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[5].display_name | Natural language processing |
| concepts[6].id | https://openalex.org/C127413603 |
| concepts[6].level | 0 |
| concepts[6].score | 0.0655122697353363 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[6].display_name | Engineering |
| concepts[7].id | https://openalex.org/C201995342 |
| concepts[7].level | 1 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q682496 |
| concepts[7].display_name | Systems engineering |
| keywords[0].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[0].score | 0.6888697743415833 |
| keywords[0].display_name | Artificial intelligence |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.669823944568634 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/task |
| keywords[2].score | 0.5736522674560547 |
| keywords[2].display_name | Task (project management) |
| keywords[3].id | https://openalex.org/keywords/class |
| keywords[3].score | 0.5716440081596375 |
| keywords[3].display_name | Class (philosophy) |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.5388194918632507 |
| keywords[4].display_name | Machine learning |
| keywords[5].id | https://openalex.org/keywords/natural-language-processing |
| keywords[5].score | 0.5081515312194824 |
| keywords[5].display_name | Natural language processing |
| keywords[6].id | https://openalex.org/keywords/engineering |
| keywords[6].score | 0.0655122697353363 |
| keywords[6].display_name | Engineering |
| language | en |
| locations[0].id | doi:10.3390/app13137901 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210205812 |
| locations[0].source.issn | 2076-3417 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2076-3417 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Applied Sciences |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Applied Sciences |
| locations[0].landing_page_url | https://doi.org/10.3390/app13137901 |
| locations[1].id | pmh:oai:doaj.org/article:2093a612299842ad886ac4ef03e64098 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Applied Sciences, Vol 13, Iss 13, p 7901 (2023) |
| locations[1].landing_page_url | https://doaj.org/article/2093a612299842ad886ac4ef03e64098 |
| locations[2].id | pmh:oai:mdpi.com:/2076-3417/13/13/7901/ |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400947 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | MDPI (MDPI AG) |
| locations[2].source.host_organization | https://openalex.org/I4210097602 |
| locations[2].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[2].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Applied Sciences; Volume 13; Issue 13; Pages: 7901 |
| locations[2].landing_page_url | https://dx.doi.org/10.3390/app13137901 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5010914442 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-8366-6059 |
| authorships[0].author.display_name | Roberto Corizzo |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I181401687 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Computer Science, American University, Washington, DC 20016, USA |
| authorships[0].institutions[0].id | https://openalex.org/I181401687 |
| authorships[0].institutions[0].ror | https://ror.org/052w4zt36 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I181401687 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | American University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Roberto Corizzo |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Department of Computer Science, American University, Washington, DC 20016, USA |
| authorships[1].author.id | https://openalex.org/A5092414901 |
| authorships[1].author.orcid | https://orcid.org/0009-0007-3549-3270 |
| authorships[1].author.display_name | Sebastian Leal-Arenas |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I170201317 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Linguistics, University of Pittsburgh, Pittsburgh, PA 15260, USA |
| authorships[1].institutions[0].id | https://openalex.org/I170201317 |
| authorships[1].institutions[0].ror | https://ror.org/01an3r305 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I170201317 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | University of Pittsburgh |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Sebastian Leal-Arenas |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Department of Linguistics, University of Pittsburgh, Pittsburgh, PA 15260, USA |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.3390/app13137901 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2023-07-07T00:00:00 |
| display_name | One-Class Learning for AI-Generated Essay Detection |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10028 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9993000030517578 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Topic Modeling |
| related_works | https://openalex.org/W2961085424, https://openalex.org/W4306674287, https://openalex.org/W3046775127, https://openalex.org/W3107602296, https://openalex.org/W3170094116, https://openalex.org/W4386462264, https://openalex.org/W4313488044, https://openalex.org/W3209574120, https://openalex.org/W4312192474, https://openalex.org/W4210805261 |
| cited_by_count | 13 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 5 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 7 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | doi:10.3390/app13137901 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210205812 |
| best_oa_location.source.issn | 2076-3417 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2076-3417 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Applied Sciences |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Applied Sciences |
| best_oa_location.landing_page_url | https://doi.org/10.3390/app13137901 |
| primary_location.id | doi:10.3390/app13137901 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210205812 |
| primary_location.source.issn | 2076-3417 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2076-3417 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Applied Sciences |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Applied Sciences |
| primary_location.landing_page_url | https://doi.org/10.3390/app13137901 |
| publication_date | 2023-07-05 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W4327946446, https://openalex.org/W4320495408, https://openalex.org/W4313479734, https://openalex.org/W2053020149, https://openalex.org/W2060474894, https://openalex.org/W4242937284, https://openalex.org/W4293581755, https://openalex.org/W2999606367, https://openalex.org/W3203964276, https://openalex.org/W4312845117, https://openalex.org/W3200466594, https://openalex.org/W4365514328, https://openalex.org/W3199748875, https://openalex.org/W4323313027, https://openalex.org/W4327955601, https://openalex.org/W2516338333, https://openalex.org/W2133944470, https://openalex.org/W94749751, https://openalex.org/W2025403586, https://openalex.org/W6761551260, https://openalex.org/W3034287667, https://openalex.org/W3139815689, https://openalex.org/W2951080837, https://openalex.org/W6678494731, https://openalex.org/W4385488586, https://openalex.org/W4318486034, https://openalex.org/W3007271490, https://openalex.org/W4318828758, https://openalex.org/W3205303036, https://openalex.org/W3133633899, https://openalex.org/W4319586606, https://openalex.org/W3095716643, https://openalex.org/W2963205619, https://openalex.org/W2604264634, https://openalex.org/W3205149261, https://openalex.org/W2023254499, https://openalex.org/W2790166049, https://openalex.org/W3194388628, https://openalex.org/W4254182148, https://openalex.org/W2296719434, https://openalex.org/W1986332411, https://openalex.org/W2041559880, https://openalex.org/W3103912187, https://openalex.org/W2735406108, https://openalex.org/W2160017075, https://openalex.org/W2123933087 |
| referenced_works_count | 46 |
| abstract_inverted_index.a | 5, 49 |
| abstract_inverted_index.AI | 14 |
| abstract_inverted_index.In | 71 |
| abstract_inverted_index.L2 | 119, 122 |
| abstract_inverted_index.as | 17 |
| abstract_inverted_index.by | 78 |
| abstract_inverted_index.in | 65, 97, 118, 150 |
| abstract_inverted_index.is | 4, 68, 76, 95, 127 |
| abstract_inverted_index.it | 126 |
| abstract_inverted_index.of | 1, 92, 142 |
| abstract_inverted_index.to | 25, 48, 129 |
| abstract_inverted_index.The | 134 |
| abstract_inverted_index.and | 19, 34, 43, 82, 121, 139 |
| abstract_inverted_index.are | 37, 45, 57, 107, 145 |
| abstract_inverted_index.for | 40, 60, 86, 109 |
| abstract_inverted_index.gap | 75 |
| abstract_inverted_index.the | 10, 20, 151 |
| abstract_inverted_index.two | 114 |
| abstract_inverted_index.more | 58, 146 |
| abstract_inverted_index.sets | 141 |
| abstract_inverted_index.show | 124 |
| abstract_inverted_index.such | 16 |
| abstract_inverted_index.task | 8 |
| abstract_inverted_index.text | 29 |
| abstract_inverted_index.than | 148 |
| abstract_inverted_index.that | 125 |
| abstract_inverted_index.they | 44 |
| abstract_inverted_index.this | 72, 74 |
| abstract_inverted_index.with | 23, 113 |
| abstract_inverted_index.data, | 42, 103 |
| abstract_inverted_index.essay | 66, 88 |
| abstract_inverted_index.i.e., | 104 |
| abstract_inverted_index.model | 110 |
| abstract_inverted_index.still | 69 |
| abstract_inverted_index.task. | 153 |
| abstract_inverted_index.their | 63 |
| abstract_inverted_index.where | 100 |
| abstract_inverted_index.which | 137, 140 |
| abstract_inverted_index.detect | 131 |
| abstract_inverted_index.essays | 117 |
| abstract_inverted_index.models | 85, 94, 138 |
| abstract_inverted_index.mostly | 38 |
| abstract_inverted_index.others | 149 |
| abstract_inverted_index.paper, | 73 |
| abstract_inverted_index.raised | 21 |
| abstract_inverted_index.regard | 24 |
| abstract_inverted_index.tasks, | 62 |
| abstract_inverted_index.tools, | 15 |
| abstract_inverted_index.English | 41, 120 |
| abstract_inverted_index.Results | 112 |
| abstract_inverted_index.Spanish | 123 |
| abstract_inverted_index.content | 3 |
| abstract_inverted_index.essays, | 106 |
| abstract_inverted_index.essays. | 133 |
| abstract_inverted_index.labeled | 102 |
| abstract_inverted_index.limited | 47 |
| abstract_inverted_index.methods | 56 |
| abstract_inverted_index.reveals | 136 |
| abstract_inverted_index.towards | 13 |
| abstract_inverted_index.Although | 53 |
| abstract_inverted_index.ChatGPT, | 18 |
| abstract_inverted_index.Existing | 28 |
| abstract_inverted_index.academic | 26 |
| abstract_inverted_index.adopting | 79 |
| abstract_inverted_index.analysis | 135 |
| abstract_inverted_index.assessed | 96 |
| abstract_inverted_index.concerns | 22 |
| abstract_inverted_index.datasets | 115 |
| abstract_inverted_index.explored | 77 |
| abstract_inverted_index.feasible | 128 |
| abstract_inverted_index.features | 81, 144 |
| abstract_inverted_index.learning | 51, 55, 84 |
| abstract_inverted_index.methods, | 36 |
| abstract_inverted_index.powerful | 147 |
| abstract_inverted_index.setting. | 52 |
| abstract_inverted_index.suitable | 59 |
| abstract_inverted_index.tailored | 39 |
| abstract_inverted_index.unknown. | 70 |
| abstract_inverted_index.Detection | 0, 90 |
| abstract_inverted_index.attention | 12 |
| abstract_inverted_index.crucially | 6 |
| abstract_inverted_index.detection | 67, 152 |
| abstract_inverted_index.different | 93, 98 |
| abstract_inverted_index.important | 7 |
| abstract_inverted_index.including | 32 |
| abstract_inverted_index.one-class | 54, 83 |
| abstract_inverted_index.settings, | 99 |
| abstract_inverted_index.training. | 111 |
| abstract_inverted_index.typically | 46 |
| abstract_inverted_index.accurately | 130 |
| abstract_inverted_index.containing | 116 |
| abstract_inverted_index.detection. | 89 |
| abstract_inverted_index.increasing | 11 |
| abstract_inverted_index.integrity. | 27 |
| abstract_inverted_index.linguistic | 80, 143 |
| abstract_inverted_index.positively | 101 |
| abstract_inverted_index.supervised | 50 |
| abstract_inverted_index.approaches, | 31 |
| abstract_inverted_index.considering | 9 |
| abstract_inverted_index.performance | 91 |
| abstract_inverted_index.unavailable | 108 |
| abstract_inverted_index.AI-generated | 2, 87, 105, 132 |
| abstract_inverted_index.effectiveness | 64 |
| abstract_inverted_index.feature-based | 35 |
| abstract_inverted_index.classification | 30, 61 |
| abstract_inverted_index.neural-network-based | 33 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5092414901, https://openalex.org/A5010914442 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| corresponding_institution_ids | https://openalex.org/I170201317, https://openalex.org/I181401687 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.8600000143051147 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile.value | 0.91832947 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |