One-Topic-Doesn't-Fit-All: Transcreating Reading Comprehension Test for Personalized Learning Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2511.09135
Personalized learning has gained attention in English as a Foreign Language (EFL) education, where engagement and motivation play crucial roles in reading comprehension. We propose a novel approach to generating personalized English reading comprehension tests tailored to students' interests. We develop a structured content transcreation pipeline using OpenAI's gpt-4o, where we start with the RACE-C dataset, and generate new passages and multiple-choice reading comprehension questions that are linguistically similar to the original passages but semantically aligned with individual learners' interests. Our methodology integrates topic extraction, question classification based on Bloom's taxonomy, linguistic feature analysis, and content transcreation to enhance student engagement. We conduct a controlled experiment with EFL learners in South Korea to examine the impact of interest-aligned reading materials on comprehension and motivation. Our results show students learning with personalized reading passages demonstrate improved comprehension and motivation retention compared to those learning with non-personalized materials.
Related Topics
- Type
- preprint
- Landing Page
- http://arxiv.org/abs/2511.09135
- https://arxiv.org/pdf/2511.09135
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4416236337
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416236337Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2511.09135Digital Object Identifier
- Title
-
One-Topic-Doesn't-Fit-All: Transcreating Reading Comprehension Test for Personalized LearningWork title
- Type
-
preprintOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-11-12Full publication date if available
- Authors
-
Jieun Han, Daniel J. Lee, Haneul Yoo, Jun‐Hyoung Park, Soyeon Ahn, Alice OhList of authors in order
- Landing page
-
https://arxiv.org/abs/2511.09135Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2511.09135Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2511.09135Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4416236337 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2511.09135 |
| ids.doi | https://doi.org/10.48550/arxiv.2511.09135 |
| ids.openalex | https://openalex.org/W4416236337 |
| fwci | |
| type | preprint |
| title | One-Topic-Doesn't-Fit-All: Transcreating Reading Comprehension Test for Personalized Learning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | |
| locations[0].id | pmh:oai:arXiv.org:2511.09135 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://arxiv.org/pdf/2511.09135 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2511.09135 |
| locations[1].id | doi:10.48550/arxiv.2511.09135 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2511.09135 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5064956081 |
| authorships[0].author.orcid | https://orcid.org/0009-0003-7740-517X |
| authorships[0].author.display_name | Jieun Han |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Han, Jieun |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100436289 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6990-4441 |
| authorships[1].author.display_name | Daniel J. Lee |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Lee, Daniel |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5089401046 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-8266-6962 |
| authorships[2].author.display_name | Haneul Yoo |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yoo, Haneul |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5041625085 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5391-4135 |
| authorships[3].author.display_name | Jun‐Hyoung Park |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Park, Junyeong |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5072141209 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-3440-2027 |
| authorships[4].author.display_name | Soyeon Ahn |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Ahn, So-Yeon |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5051125274 |
| authorships[5].author.orcid | https://orcid.org/0009-0004-7680-8310 |
| authorships[5].author.display_name | Alice Oh |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Oh, Alice |
| authorships[5].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2511.09135 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-11-14T00:00:00 |
| display_name | One-Topic-Doesn't-Fit-All: Transcreating Reading Comprehension Test for Personalized Learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-28T08:53:12.025817 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2511.09135 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2511.09135 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2511.09135 |
| primary_location.id | pmh:oai:arXiv.org:2511.09135 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://arxiv.org/pdf/2511.09135 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2511.09135 |
| publication_date | 2025-11-12 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 8, 25, 41, 103 |
| abstract_inverted_index.We | 23, 39, 101 |
| abstract_inverted_index.as | 7 |
| abstract_inverted_index.in | 5, 20, 109 |
| abstract_inverted_index.of | 116 |
| abstract_inverted_index.on | 88, 120 |
| abstract_inverted_index.to | 28, 36, 69, 97, 112, 140 |
| abstract_inverted_index.we | 50 |
| abstract_inverted_index.EFL | 107 |
| abstract_inverted_index.Our | 80, 124 |
| abstract_inverted_index.and | 15, 56, 60, 94, 122, 136 |
| abstract_inverted_index.are | 66 |
| abstract_inverted_index.but | 73 |
| abstract_inverted_index.has | 2 |
| abstract_inverted_index.new | 58 |
| abstract_inverted_index.the | 53, 70, 114 |
| abstract_inverted_index.play | 17 |
| abstract_inverted_index.show | 126 |
| abstract_inverted_index.that | 65 |
| abstract_inverted_index.with | 52, 76, 106, 129, 143 |
| abstract_inverted_index.(EFL) | 11 |
| abstract_inverted_index.Korea | 111 |
| abstract_inverted_index.South | 110 |
| abstract_inverted_index.based | 87 |
| abstract_inverted_index.novel | 26 |
| abstract_inverted_index.roles | 19 |
| abstract_inverted_index.start | 51 |
| abstract_inverted_index.tests | 34 |
| abstract_inverted_index.those | 141 |
| abstract_inverted_index.topic | 83 |
| abstract_inverted_index.using | 46 |
| abstract_inverted_index.where | 13, 49 |
| abstract_inverted_index.RACE-C | 54 |
| abstract_inverted_index.gained | 3 |
| abstract_inverted_index.impact | 115 |
| abstract_inverted_index.Bloom's | 89 |
| abstract_inverted_index.English | 6, 31 |
| abstract_inverted_index.Foreign | 9 |
| abstract_inverted_index.aligned | 75 |
| abstract_inverted_index.conduct | 102 |
| abstract_inverted_index.content | 43, 95 |
| abstract_inverted_index.crucial | 18 |
| abstract_inverted_index.develop | 40 |
| abstract_inverted_index.enhance | 98 |
| abstract_inverted_index.examine | 113 |
| abstract_inverted_index.feature | 92 |
| abstract_inverted_index.gpt-4o, | 48 |
| abstract_inverted_index.propose | 24 |
| abstract_inverted_index.reading | 21, 32, 62, 118, 131 |
| abstract_inverted_index.results | 125 |
| abstract_inverted_index.similar | 68 |
| abstract_inverted_index.student | 99 |
| abstract_inverted_index.Language | 10 |
| abstract_inverted_index.OpenAI's | 47 |
| abstract_inverted_index.approach | 27 |
| abstract_inverted_index.compared | 139 |
| abstract_inverted_index.dataset, | 55 |
| abstract_inverted_index.generate | 57 |
| abstract_inverted_index.improved | 134 |
| abstract_inverted_index.learners | 108 |
| abstract_inverted_index.learning | 1, 128, 142 |
| abstract_inverted_index.original | 71 |
| abstract_inverted_index.passages | 59, 72, 132 |
| abstract_inverted_index.pipeline | 45 |
| abstract_inverted_index.question | 85 |
| abstract_inverted_index.students | 127 |
| abstract_inverted_index.tailored | 35 |
| abstract_inverted_index.analysis, | 93 |
| abstract_inverted_index.attention | 4 |
| abstract_inverted_index.learners' | 78 |
| abstract_inverted_index.materials | 119 |
| abstract_inverted_index.questions | 64 |
| abstract_inverted_index.retention | 138 |
| abstract_inverted_index.students' | 37 |
| abstract_inverted_index.taxonomy, | 90 |
| abstract_inverted_index.controlled | 104 |
| abstract_inverted_index.education, | 12 |
| abstract_inverted_index.engagement | 14 |
| abstract_inverted_index.experiment | 105 |
| abstract_inverted_index.generating | 29 |
| abstract_inverted_index.individual | 77 |
| abstract_inverted_index.integrates | 82 |
| abstract_inverted_index.interests. | 38, 79 |
| abstract_inverted_index.linguistic | 91 |
| abstract_inverted_index.materials. | 145 |
| abstract_inverted_index.motivation | 16, 137 |
| abstract_inverted_index.structured | 42 |
| abstract_inverted_index.demonstrate | 133 |
| abstract_inverted_index.engagement. | 100 |
| abstract_inverted_index.extraction, | 84 |
| abstract_inverted_index.methodology | 81 |
| abstract_inverted_index.motivation. | 123 |
| abstract_inverted_index.Personalized | 0 |
| abstract_inverted_index.personalized | 30, 130 |
| abstract_inverted_index.semantically | 74 |
| abstract_inverted_index.comprehension | 33, 63, 121, 135 |
| abstract_inverted_index.transcreation | 44, 96 |
| abstract_inverted_index.classification | 86 |
| abstract_inverted_index.comprehension. | 22 |
| abstract_inverted_index.linguistically | 67 |
| abstract_inverted_index.multiple-choice | 61 |
| abstract_inverted_index.interest-aligned | 117 |
| abstract_inverted_index.non-personalized | 144 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |