One2Avatar: Generative Implicit Head Avatar For Few-shot User Adaptation Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2402.11909
Traditional methods for constructing high-quality, personalized head avatars from monocular videos demand extensive face captures and training time, posing a significant challenge for scalability. This paper introduces a novel approach to create high quality head avatar utilizing only a single or a few images per user. We learn a generative model for 3D animatable photo-realistic head avatar from a multi-view dataset of expressions from 2407 subjects, and leverage it as a prior for creating personalized avatar from few-shot images. Different from previous 3D-aware face generative models, our prior is built with a 3DMM-anchored neural radiance field backbone, which we show to be more effective for avatar creation through auto-decoding based on few-shot inputs. We also handle unstable 3DMM fitting by jointly optimizing the 3DMM fitting and camera calibration that leads to better few-shot adaptation. Our method demonstrates compelling results and outperforms existing state-of-the-art methods for few-shot avatar adaptation, paving the way for more efficient and personalized avatar creation.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2402.11909
- https://arxiv.org/pdf/2402.11909
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4391987800
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4391987800Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2402.11909Digital Object Identifier
- Title
-
One2Avatar: Generative Implicit Head Avatar For Few-shot User AdaptationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-02-19Full publication date if available
- Authors
-
Zhixuan Yu, Ziqian Bai, Abhimitra Meka, Feitong Tan, Qiangeng Xu, Rohit Pandey, Sean Fanello, Hyun Soo Park, Yinda ZhangList of authors in order
- Landing page
-
https://arxiv.org/abs/2402.11909Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2402.11909Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2402.11909Direct OA link when available
- Concepts
-
Avatar, Head (geology), Adaptation (eye), Generative grammar, Computer science, Shot (pellet), Human–computer interaction, Artificial intelligence, Psychology, Geology, Neuroscience, Chemistry, Organic chemistry, GeomorphologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4391987800 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2402.11909 |
| ids.doi | https://doi.org/10.48550/arxiv.2402.11909 |
| ids.openalex | https://openalex.org/W4391987800 |
| fwci | |
| type | preprint |
| title | One2Avatar: Generative Implicit Head Avatar For Few-shot User Adaptation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12290 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9991000294685364 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2207 |
| topics[0].subfield.display_name | Control and Systems Engineering |
| topics[0].display_name | Human Motion and Animation |
| topics[1].id | https://openalex.org/T10648 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9941999912261963 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1709 |
| topics[1].subfield.display_name | Human-Computer Interaction |
| topics[1].display_name | Virtual Reality Applications and Impacts |
| topics[2].id | https://openalex.org/T10812 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9904999732971191 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Human Pose and Action Recognition |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2777365542 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9198362827301025 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q83090 |
| concepts[0].display_name | Avatar |
| concepts[1].id | https://openalex.org/C2780312720 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7141633629798889 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q5689100 |
| concepts[1].display_name | Head (geology) |
| concepts[2].id | https://openalex.org/C139807058 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6677014231681824 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q352374 |
| concepts[2].display_name | Adaptation (eye) |
| concepts[3].id | https://openalex.org/C39890363 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6566615104675293 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q36108 |
| concepts[3].display_name | Generative grammar |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.6203707456588745 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C2778344882 |
| concepts[5].level | 2 |
| concepts[5].score | 0.6012213826179504 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q278938 |
| concepts[5].display_name | Shot (pellet) |
| concepts[6].id | https://openalex.org/C107457646 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4941113293170929 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q207434 |
| concepts[6].display_name | Human–computer interaction |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3170802593231201 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C15744967 |
| concepts[8].level | 0 |
| concepts[8].score | 0.22141364216804504 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[8].display_name | Psychology |
| concepts[9].id | https://openalex.org/C127313418 |
| concepts[9].level | 0 |
| concepts[9].score | 0.08320063352584839 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[9].display_name | Geology |
| concepts[10].id | https://openalex.org/C169760540 |
| concepts[10].level | 1 |
| concepts[10].score | 0.05686652660369873 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[10].display_name | Neuroscience |
| concepts[11].id | https://openalex.org/C185592680 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[11].display_name | Chemistry |
| concepts[12].id | https://openalex.org/C178790620 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11351 |
| concepts[12].display_name | Organic chemistry |
| concepts[13].id | https://openalex.org/C114793014 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q52109 |
| concepts[13].display_name | Geomorphology |
| keywords[0].id | https://openalex.org/keywords/avatar |
| keywords[0].score | 0.9198362827301025 |
| keywords[0].display_name | Avatar |
| keywords[1].id | https://openalex.org/keywords/head |
| keywords[1].score | 0.7141633629798889 |
| keywords[1].display_name | Head (geology) |
| keywords[2].id | https://openalex.org/keywords/adaptation |
| keywords[2].score | 0.6677014231681824 |
| keywords[2].display_name | Adaptation (eye) |
| keywords[3].id | https://openalex.org/keywords/generative-grammar |
| keywords[3].score | 0.6566615104675293 |
| keywords[3].display_name | Generative grammar |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.6203707456588745 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/shot |
| keywords[5].score | 0.6012213826179504 |
| keywords[5].display_name | Shot (pellet) |
| keywords[6].id | https://openalex.org/keywords/human–computer-interaction |
| keywords[6].score | 0.4941113293170929 |
| keywords[6].display_name | Human–computer interaction |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.3170802593231201 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/psychology |
| keywords[8].score | 0.22141364216804504 |
| keywords[8].display_name | Psychology |
| keywords[9].id | https://openalex.org/keywords/geology |
| keywords[9].score | 0.08320063352584839 |
| keywords[9].display_name | Geology |
| keywords[10].id | https://openalex.org/keywords/neuroscience |
| keywords[10].score | 0.05686652660369873 |
| keywords[10].display_name | Neuroscience |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2402.11909 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2402.11909 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2402.11909 |
| locations[1].id | doi:10.48550/arxiv.2402.11909 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2402.11909 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5040241147 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3065-6962 |
| authorships[0].author.display_name | Zhixuan Yu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yu, Zhixuan |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5010645821 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9562-4315 |
| authorships[1].author.display_name | Ziqian Bai |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Bai, Ziqian |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5067754015 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7906-4004 |
| authorships[2].author.display_name | Abhimitra Meka |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Meka, Abhimitra |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5025919556 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-7606-1331 |
| authorships[3].author.display_name | Feitong Tan |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Tan, Feitong |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5030369632 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Qiangeng Xu |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Xu, Qiangeng |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5016917903 |
| authorships[5].author.orcid | https://orcid.org/0009-0004-1548-3436 |
| authorships[5].author.display_name | Rohit Pandey |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Pandey, Rohit |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5056677910 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-9726-4501 |
| authorships[6].author.display_name | Sean Fanello |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Fanello, Sean |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5101538702 |
| authorships[7].author.orcid | https://orcid.org/0000-0001-6613-0738 |
| authorships[7].author.display_name | Hyun Soo Park |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Park, Hyun Soo |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5058136382 |
| authorships[8].author.orcid | https://orcid.org/0000-0001-5386-8872 |
| authorships[8].author.display_name | Yinda Zhang |
| authorships[8].author_position | last |
| authorships[8].raw_author_name | Zhang, Yinda |
| authorships[8].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2402.11909 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | One2Avatar: Generative Implicit Head Avatar For Few-shot User Adaptation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12290 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9991000294685364 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2207 |
| primary_topic.subfield.display_name | Control and Systems Engineering |
| primary_topic.display_name | Human Motion and Animation |
| related_works | https://openalex.org/W3138471234, https://openalex.org/W4247958311, https://openalex.org/W2785089443, https://openalex.org/W2265117524, https://openalex.org/W2969390373, https://openalex.org/W4312431072, https://openalex.org/W1467576422, https://openalex.org/W4220730560, https://openalex.org/W2604471456, https://openalex.org/W1773344012 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2402.11909 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2402.11909 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2402.11909 |
| primary_location.id | pmh:oai:arXiv.org:2402.11909 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2402.11909 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2402.11909 |
| publication_date | 2024-02-19 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 19, 27, 38, 41, 48, 58, 70, 91 |
| abstract_inverted_index.3D | 52 |
| abstract_inverted_index.We | 46, 113 |
| abstract_inverted_index.as | 69 |
| abstract_inverted_index.be | 101 |
| abstract_inverted_index.by | 119 |
| abstract_inverted_index.is | 88 |
| abstract_inverted_index.it | 68 |
| abstract_inverted_index.of | 61 |
| abstract_inverted_index.on | 110 |
| abstract_inverted_index.or | 40 |
| abstract_inverted_index.to | 30, 100, 130 |
| abstract_inverted_index.we | 98 |
| abstract_inverted_index.Our | 134 |
| abstract_inverted_index.and | 15, 66, 125, 139, 154 |
| abstract_inverted_index.few | 42 |
| abstract_inverted_index.for | 2, 22, 51, 72, 104, 144, 151 |
| abstract_inverted_index.our | 86 |
| abstract_inverted_index.per | 44 |
| abstract_inverted_index.the | 122, 149 |
| abstract_inverted_index.way | 150 |
| abstract_inverted_index.2407 | 64 |
| abstract_inverted_index.3DMM | 117, 123 |
| abstract_inverted_index.This | 24 |
| abstract_inverted_index.also | 114 |
| abstract_inverted_index.face | 13, 83 |
| abstract_inverted_index.from | 8, 57, 63, 76, 80 |
| abstract_inverted_index.head | 6, 34, 55 |
| abstract_inverted_index.high | 32 |
| abstract_inverted_index.more | 102, 152 |
| abstract_inverted_index.only | 37 |
| abstract_inverted_index.show | 99 |
| abstract_inverted_index.that | 128 |
| abstract_inverted_index.with | 90 |
| abstract_inverted_index.based | 109 |
| abstract_inverted_index.built | 89 |
| abstract_inverted_index.field | 95 |
| abstract_inverted_index.leads | 129 |
| abstract_inverted_index.learn | 47 |
| abstract_inverted_index.model | 50 |
| abstract_inverted_index.novel | 28 |
| abstract_inverted_index.paper | 25 |
| abstract_inverted_index.prior | 71, 87 |
| abstract_inverted_index.time, | 17 |
| abstract_inverted_index.user. | 45 |
| abstract_inverted_index.which | 97 |
| abstract_inverted_index.avatar | 35, 56, 75, 105, 146, 156 |
| abstract_inverted_index.better | 131 |
| abstract_inverted_index.camera | 126 |
| abstract_inverted_index.create | 31 |
| abstract_inverted_index.demand | 11 |
| abstract_inverted_index.handle | 115 |
| abstract_inverted_index.images | 43 |
| abstract_inverted_index.method | 135 |
| abstract_inverted_index.neural | 93 |
| abstract_inverted_index.paving | 148 |
| abstract_inverted_index.posing | 18 |
| abstract_inverted_index.single | 39 |
| abstract_inverted_index.videos | 10 |
| abstract_inverted_index.avatars | 7 |
| abstract_inverted_index.dataset | 60 |
| abstract_inverted_index.fitting | 118, 124 |
| abstract_inverted_index.images. | 78 |
| abstract_inverted_index.inputs. | 112 |
| abstract_inverted_index.jointly | 120 |
| abstract_inverted_index.methods | 1, 143 |
| abstract_inverted_index.models, | 85 |
| abstract_inverted_index.quality | 33 |
| abstract_inverted_index.results | 138 |
| abstract_inverted_index.through | 107 |
| abstract_inverted_index.3D-aware | 82 |
| abstract_inverted_index.approach | 29 |
| abstract_inverted_index.captures | 14 |
| abstract_inverted_index.creating | 73 |
| abstract_inverted_index.creation | 106 |
| abstract_inverted_index.existing | 141 |
| abstract_inverted_index.few-shot | 77, 111, 132, 145 |
| abstract_inverted_index.leverage | 67 |
| abstract_inverted_index.previous | 81 |
| abstract_inverted_index.radiance | 94 |
| abstract_inverted_index.training | 16 |
| abstract_inverted_index.unstable | 116 |
| abstract_inverted_index.Different | 79 |
| abstract_inverted_index.backbone, | 96 |
| abstract_inverted_index.challenge | 21 |
| abstract_inverted_index.creation. | 157 |
| abstract_inverted_index.effective | 103 |
| abstract_inverted_index.efficient | 153 |
| abstract_inverted_index.extensive | 12 |
| abstract_inverted_index.monocular | 9 |
| abstract_inverted_index.subjects, | 65 |
| abstract_inverted_index.utilizing | 36 |
| abstract_inverted_index.animatable | 53 |
| abstract_inverted_index.compelling | 137 |
| abstract_inverted_index.generative | 49, 84 |
| abstract_inverted_index.introduces | 26 |
| abstract_inverted_index.multi-view | 59 |
| abstract_inverted_index.optimizing | 121 |
| abstract_inverted_index.Traditional | 0 |
| abstract_inverted_index.adaptation, | 147 |
| abstract_inverted_index.adaptation. | 133 |
| abstract_inverted_index.calibration | 127 |
| abstract_inverted_index.expressions | 62 |
| abstract_inverted_index.outperforms | 140 |
| abstract_inverted_index.significant | 20 |
| abstract_inverted_index.constructing | 3 |
| abstract_inverted_index.demonstrates | 136 |
| abstract_inverted_index.personalized | 5, 74, 155 |
| abstract_inverted_index.scalability. | 23 |
| abstract_inverted_index.3DMM-anchored | 92 |
| abstract_inverted_index.auto-decoding | 108 |
| abstract_inverted_index.high-quality, | 4 |
| abstract_inverted_index.photo-realistic | 54 |
| abstract_inverted_index.state-of-the-art | 142 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 9 |
| citation_normalized_percentile |