Online Extrinsic Calibration on LiDAR-Camera System with LiDAR Intensity Attention and Structural Consistency Loss Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.3390/rs14112525
Extrinsic calibration on a LiDAR-camera system is an essential task for the advanced perception application for the intelligent vehicle. In the offline situation, a calibration object based method can estimate the extrinsic parameters in high precision. However, during the long time application of LiDAR-camera system in the actual scenario, the relative pose of LiDAR and camera has small and accumulated drift, so that the offline calibration result is not accurate. To correct the extrinsic parameter conveniently, we present a deep learning based online extrinsic calibration method in this paper. From Lambertian reflection model, it is found that an object with higher LiDAR intensity has the higher possibility to have salient RGB features. Based on this fact, we present a LiDAR intensity attention based backbone network (LIA-Net) to extract the significant co-observed calibration features from LiDAR data and RGB image. In the later stage of training, the loss of extrinsic parameters changes slowly, causing the risk of vanishing gradient and limiting the training efficiency. To deal with this issue, we present the structural consistency (SC) loss to minimize the difference between projected LiDAR image (i.e., LiDAR depth image, LiDAR intensity image) and its ground truth (GT) LiDAR image. It aims to accurately align the LiDAR point and RGB pixel. With LIA-Net and SC loss, we present the convolution neural network (CNN) based calibration network LIA-SC-Net. Comparison experiments on a KITTI dataset demonstrate that LIA-SC-Net has achieved more accurate calibration results than state-of-the-art learning based methods. The proposed method has both accurate and real-time performance. Ablation studies also show the effectiveness of proposed modules.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/rs14112525
- https://www.mdpi.com/2072-4292/14/11/2525/pdf?version=1653469244
- OA Status
- gold
- Cited By
- 11
- References
- 67
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4281489542
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4281489542Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/rs14112525Digital Object Identifier
- Title
-
Online Extrinsic Calibration on LiDAR-Camera System with LiDAR Intensity Attention and Structural Consistency LossWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-05-25Full publication date if available
- Authors
-
Pei An, Yingshuo Gao, Liheng Wang, Yanfei Chen, Jie MaList of authors in order
- Landing page
-
https://doi.org/10.3390/rs14112525Publisher landing page
- PDF URL
-
https://www.mdpi.com/2072-4292/14/11/2525/pdf?version=1653469244Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2072-4292/14/11/2525/pdf?version=1653469244Direct OA link when available
- Concepts
-
Lidar, Calibration, Computer science, Artificial intelligence, Remote sensing, Computer vision, RGB color model, Geology, Mathematics, StatisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
11Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2024: 6, 2023: 1, 2022: 1Per-year citation counts (last 5 years)
- References (count)
-
67Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4281489542 |
|---|---|
| doi | https://doi.org/10.3390/rs14112525 |
| ids.doi | https://doi.org/10.3390/rs14112525 |
| ids.openalex | https://openalex.org/W4281489542 |
| fwci | 3.71998837 |
| type | article |
| title | Online Extrinsic Calibration on LiDAR-Camera System with LiDAR Intensity Attention and Structural Consistency Loss |
| biblio.issue | 11 |
| biblio.volume | 14 |
| biblio.last_page | 2525 |
| biblio.first_page | 2525 |
| topics[0].id | https://openalex.org/T10191 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2202 |
| topics[0].subfield.display_name | Aerospace Engineering |
| topics[0].display_name | Robotics and Sensor-Based Localization |
| topics[1].id | https://openalex.org/T10638 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9994000196456909 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Optical measurement and interference techniques |
| topics[2].id | https://openalex.org/T12153 |
| topics[2].field.id | https://openalex.org/fields/31 |
| topics[2].field.display_name | Physics and Astronomy |
| topics[2].score | 0.9987999796867371 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3105 |
| topics[2].subfield.display_name | Instrumentation |
| topics[2].display_name | Advanced Optical Sensing Technologies |
| is_xpac | False |
| apc_list.value | 2500 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2707 |
| apc_paid.value | 2500 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2707 |
| concepts[0].id | https://openalex.org/C51399673 |
| concepts[0].level | 2 |
| concepts[0].score | 0.936096727848053 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q504027 |
| concepts[0].display_name | Lidar |
| concepts[1].id | https://openalex.org/C165838908 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6901953816413879 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q736777 |
| concepts[1].display_name | Calibration |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6687890291213989 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6631239652633667 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C62649853 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5948459506034851 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[4].display_name | Remote sensing |
| concepts[5].id | https://openalex.org/C31972630 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5836024880409241 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[5].display_name | Computer vision |
| concepts[6].id | https://openalex.org/C82990744 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5368296504020691 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q166194 |
| concepts[6].display_name | RGB color model |
| concepts[7].id | https://openalex.org/C127313418 |
| concepts[7].level | 0 |
| concepts[7].score | 0.18676161766052246 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[7].display_name | Geology |
| concepts[8].id | https://openalex.org/C33923547 |
| concepts[8].level | 0 |
| concepts[8].score | 0.142306387424469 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[8].display_name | Mathematics |
| concepts[9].id | https://openalex.org/C105795698 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[9].display_name | Statistics |
| keywords[0].id | https://openalex.org/keywords/lidar |
| keywords[0].score | 0.936096727848053 |
| keywords[0].display_name | Lidar |
| keywords[1].id | https://openalex.org/keywords/calibration |
| keywords[1].score | 0.6901953816413879 |
| keywords[1].display_name | Calibration |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6687890291213989 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.6631239652633667 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/remote-sensing |
| keywords[4].score | 0.5948459506034851 |
| keywords[4].display_name | Remote sensing |
| keywords[5].id | https://openalex.org/keywords/computer-vision |
| keywords[5].score | 0.5836024880409241 |
| keywords[5].display_name | Computer vision |
| keywords[6].id | https://openalex.org/keywords/rgb-color-model |
| keywords[6].score | 0.5368296504020691 |
| keywords[6].display_name | RGB color model |
| keywords[7].id | https://openalex.org/keywords/geology |
| keywords[7].score | 0.18676161766052246 |
| keywords[7].display_name | Geology |
| keywords[8].id | https://openalex.org/keywords/mathematics |
| keywords[8].score | 0.142306387424469 |
| keywords[8].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.3390/rs14112525 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S43295729 |
| locations[0].source.issn | 2072-4292 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2072-4292 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Remote Sensing |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2072-4292/14/11/2525/pdf?version=1653469244 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Remote Sensing |
| locations[0].landing_page_url | https://doi.org/10.3390/rs14112525 |
| locations[1].id | pmh:oai:doaj.org/article:04b5751265524d269fa16a360e7097d0 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Remote Sensing, Vol 14, Iss 11, p 2525 (2022) |
| locations[1].landing_page_url | https://doaj.org/article/04b5751265524d269fa16a360e7097d0 |
| locations[2].id | pmh:oai:mdpi.com:/2072-4292/14/11/2525/ |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400947 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | MDPI (MDPI AG) |
| locations[2].source.host_organization | https://openalex.org/I4210097602 |
| locations[2].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[2].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Remote Sensing; Volume 14; Issue 11; Pages: 2525 |
| locations[2].landing_page_url | https://dx.doi.org/10.3390/rs14112525 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5004476352 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3645-8465 |
| authorships[0].author.display_name | Pei An |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I47720641 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430072, China |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I91125648 |
| authorships[0].affiliations[1].raw_affiliation_string | School of Electrical and Information Engineering, Wuhan Institute of Technology, Wuhan 430072, China |
| authorships[0].institutions[0].id | https://openalex.org/I47720641 |
| authorships[0].institutions[0].ror | https://ror.org/00p991c53 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I47720641 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Huazhong University of Science and Technology |
| authorships[0].institutions[1].id | https://openalex.org/I91125648 |
| authorships[0].institutions[1].ror | https://ror.org/04jcykh16 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I91125648 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | Wuhan Institute of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Pei An |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430072, China, School of Electrical and Information Engineering, Wuhan Institute of Technology, Wuhan 430072, China |
| authorships[1].author.id | https://openalex.org/A5110905673 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Yingshuo Gao |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I47720641 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430072, China |
| authorships[1].institutions[0].id | https://openalex.org/I47720641 |
| authorships[1].institutions[0].ror | https://ror.org/00p991c53 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I47720641 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Huazhong University of Science and Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yingshuo Gao |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430072, China |
| authorships[2].author.id | https://openalex.org/A5101812805 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Liheng Wang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I91125648 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Electrical and Information Engineering, Wuhan Institute of Technology, Wuhan 430072, China |
| authorships[2].institutions[0].id | https://openalex.org/I91125648 |
| authorships[2].institutions[0].ror | https://ror.org/04jcykh16 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I91125648 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Wuhan Institute of Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Liheng Wang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Electrical and Information Engineering, Wuhan Institute of Technology, Wuhan 430072, China |
| authorships[3].author.id | https://openalex.org/A5100658756 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-0944-222X |
| authorships[3].author.display_name | Yanfei Chen |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I91125648 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Electrical and Information Engineering, Wuhan Institute of Technology, Wuhan 430072, China |
| authorships[3].institutions[0].id | https://openalex.org/I91125648 |
| authorships[3].institutions[0].ror | https://ror.org/04jcykh16 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I91125648 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Wuhan Institute of Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yanfei Chen |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Electrical and Information Engineering, Wuhan Institute of Technology, Wuhan 430072, China |
| authorships[4].author.id | https://openalex.org/A5101807673 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-1996-5163 |
| authorships[4].author.display_name | Jie Ma |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I47720641 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430072, China |
| authorships[4].institutions[0].id | https://openalex.org/I47720641 |
| authorships[4].institutions[0].ror | https://ror.org/00p991c53 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I47720641 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Huazhong University of Science and Technology |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Jie Ma |
| authorships[4].is_corresponding | True |
| authorships[4].raw_affiliation_strings | School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430072, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2072-4292/14/11/2525/pdf?version=1653469244 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2022-05-26T00:00:00 |
| display_name | Online Extrinsic Calibration on LiDAR-Camera System with LiDAR Intensity Attention and Structural Consistency Loss |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10191 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2202 |
| primary_topic.subfield.display_name | Aerospace Engineering |
| primary_topic.display_name | Robotics and Sensor-Based Localization |
| related_works | https://openalex.org/W4319317934, https://openalex.org/W2901265155, https://openalex.org/W2956374172, https://openalex.org/W4281783339, https://openalex.org/W2351984678, https://openalex.org/W2140032575, https://openalex.org/W2011860471, https://openalex.org/W3011451421, https://openalex.org/W2012196540, https://openalex.org/W196913356 |
| cited_by_count | 11 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 6 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | doi:10.3390/rs14112525 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S43295729 |
| best_oa_location.source.issn | 2072-4292 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2072-4292 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Remote Sensing |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2072-4292/14/11/2525/pdf?version=1653469244 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Remote Sensing |
| best_oa_location.landing_page_url | https://doi.org/10.3390/rs14112525 |
| primary_location.id | doi:10.3390/rs14112525 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S43295729 |
| primary_location.source.issn | 2072-4292 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2072-4292 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Remote Sensing |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2072-4292/14/11/2525/pdf?version=1653469244 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Remote Sensing |
| primary_location.landing_page_url | https://doi.org/10.3390/rs14112525 |
| publication_date | 2022-05-25 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2964062501, https://openalex.org/W2150066425, https://openalex.org/W3014957855, https://openalex.org/W2963400571, https://openalex.org/W3173732446, https://openalex.org/W3049314505, https://openalex.org/W2167667767, https://openalex.org/W3201849385, https://openalex.org/W2999050151, https://openalex.org/W3030785644, https://openalex.org/W2017088761, https://openalex.org/W2770841999, https://openalex.org/W2217105717, https://openalex.org/W3091142689, https://openalex.org/W2066303290, https://openalex.org/W3017930107, https://openalex.org/W6682889407, https://openalex.org/W6682137061, https://openalex.org/W3009122032, https://openalex.org/W1991544872, https://openalex.org/W2097649661, https://openalex.org/W2124313187, https://openalex.org/W2094694151, https://openalex.org/W2964186846, https://openalex.org/W2058560716, https://openalex.org/W2746193234, https://openalex.org/W4220808978, https://openalex.org/W2156412592, https://openalex.org/W2772370425, https://openalex.org/W2810750599, https://openalex.org/W2890347775, https://openalex.org/W3090232188, https://openalex.org/W2567328166, https://openalex.org/W2797701484, https://openalex.org/W2548688485, https://openalex.org/W2054969198, https://openalex.org/W2556806731, https://openalex.org/W3091523271, https://openalex.org/W2740614846, https://openalex.org/W2288951236, https://openalex.org/W2471962767, https://openalex.org/W2535547924, https://openalex.org/W6659088674, https://openalex.org/W3085759494, https://openalex.org/W2609717538, https://openalex.org/W1536680647, https://openalex.org/W2963270286, https://openalex.org/W2789777740, https://openalex.org/W2989819309, https://openalex.org/W2772641132, https://openalex.org/W6638444622, https://openalex.org/W2194775991, https://openalex.org/W2963782415, https://openalex.org/W3088256830, https://openalex.org/W6805128273, https://openalex.org/W2963416674, https://openalex.org/W6832943298, https://openalex.org/W2955058313, https://openalex.org/W3207950313, https://openalex.org/W1981103368, https://openalex.org/W3216473456, https://openalex.org/W3101092662, https://openalex.org/W2033778264, https://openalex.org/W4252023983, https://openalex.org/W3104502516, https://openalex.org/W3102327032, https://openalex.org/W3107819843 |
| referenced_works_count | 67 |
| abstract_inverted_index.a | 3, 23, 78, 118, 227 |
| abstract_inverted_index.In | 19, 139 |
| abstract_inverted_index.It | 197 |
| abstract_inverted_index.SC | 211 |
| abstract_inverted_index.To | 70, 163 |
| abstract_inverted_index.an | 7, 97 |
| abstract_inverted_index.in | 33, 45, 86 |
| abstract_inverted_index.is | 6, 67, 94 |
| abstract_inverted_index.it | 93 |
| abstract_inverted_index.of | 42, 52, 143, 147, 155, 259 |
| abstract_inverted_index.on | 2, 113, 226 |
| abstract_inverted_index.so | 61 |
| abstract_inverted_index.to | 107, 126, 175, 199 |
| abstract_inverted_index.we | 76, 116, 168, 213 |
| abstract_inverted_index.RGB | 110, 137, 206 |
| abstract_inverted_index.The | 244 |
| abstract_inverted_index.and | 54, 58, 136, 158, 190, 205, 210, 250 |
| abstract_inverted_index.can | 28 |
| abstract_inverted_index.for | 10, 15 |
| abstract_inverted_index.has | 56, 103, 233, 247 |
| abstract_inverted_index.its | 191 |
| abstract_inverted_index.not | 68 |
| abstract_inverted_index.the | 11, 16, 20, 30, 38, 46, 49, 63, 72, 104, 128, 140, 145, 153, 160, 170, 177, 202, 215, 257 |
| abstract_inverted_index.(GT) | 194 |
| abstract_inverted_index.(SC) | 173 |
| abstract_inverted_index.From | 89 |
| abstract_inverted_index.With | 208 |
| abstract_inverted_index.aims | 198 |
| abstract_inverted_index.also | 255 |
| abstract_inverted_index.both | 248 |
| abstract_inverted_index.data | 135 |
| abstract_inverted_index.deal | 164 |
| abstract_inverted_index.deep | 79 |
| abstract_inverted_index.from | 133 |
| abstract_inverted_index.have | 108 |
| abstract_inverted_index.high | 34 |
| abstract_inverted_index.long | 39 |
| abstract_inverted_index.loss | 146, 174 |
| abstract_inverted_index.more | 235 |
| abstract_inverted_index.pose | 51 |
| abstract_inverted_index.risk | 154 |
| abstract_inverted_index.show | 256 |
| abstract_inverted_index.task | 9 |
| abstract_inverted_index.than | 239 |
| abstract_inverted_index.that | 62, 96, 231 |
| abstract_inverted_index.this | 87, 114, 166 |
| abstract_inverted_index.time | 40 |
| abstract_inverted_index.with | 99, 165 |
| abstract_inverted_index.(CNN) | 219 |
| abstract_inverted_index.Based | 112 |
| abstract_inverted_index.KITTI | 228 |
| abstract_inverted_index.LiDAR | 53, 101, 119, 134, 181, 184, 187, 195, 203 |
| abstract_inverted_index.align | 201 |
| abstract_inverted_index.based | 26, 81, 122, 220, 242 |
| abstract_inverted_index.depth | 185 |
| abstract_inverted_index.fact, | 115 |
| abstract_inverted_index.found | 95 |
| abstract_inverted_index.image | 182 |
| abstract_inverted_index.later | 141 |
| abstract_inverted_index.loss, | 212 |
| abstract_inverted_index.point | 204 |
| abstract_inverted_index.small | 57 |
| abstract_inverted_index.stage | 142 |
| abstract_inverted_index.truth | 193 |
| abstract_inverted_index.(i.e., | 183 |
| abstract_inverted_index.actual | 47 |
| abstract_inverted_index.camera | 55 |
| abstract_inverted_index.drift, | 60 |
| abstract_inverted_index.during | 37 |
| abstract_inverted_index.ground | 192 |
| abstract_inverted_index.higher | 100, 105 |
| abstract_inverted_index.image) | 189 |
| abstract_inverted_index.image, | 186 |
| abstract_inverted_index.image. | 138, 196 |
| abstract_inverted_index.issue, | 167 |
| abstract_inverted_index.method | 27, 85, 246 |
| abstract_inverted_index.model, | 92 |
| abstract_inverted_index.neural | 217 |
| abstract_inverted_index.object | 25, 98 |
| abstract_inverted_index.online | 82 |
| abstract_inverted_index.paper. | 88 |
| abstract_inverted_index.pixel. | 207 |
| abstract_inverted_index.result | 66 |
| abstract_inverted_index.system | 5, 44 |
| abstract_inverted_index.LIA-Net | 209 |
| abstract_inverted_index.between | 179 |
| abstract_inverted_index.causing | 152 |
| abstract_inverted_index.changes | 150 |
| abstract_inverted_index.correct | 71 |
| abstract_inverted_index.dataset | 229 |
| abstract_inverted_index.extract | 127 |
| abstract_inverted_index.network | 124, 218, 222 |
| abstract_inverted_index.offline | 21, 64 |
| abstract_inverted_index.present | 77, 117, 169, 214 |
| abstract_inverted_index.results | 238 |
| abstract_inverted_index.salient | 109 |
| abstract_inverted_index.slowly, | 151 |
| abstract_inverted_index.studies | 254 |
| abstract_inverted_index.Ablation | 253 |
| abstract_inverted_index.However, | 36 |
| abstract_inverted_index.accurate | 236, 249 |
| abstract_inverted_index.achieved | 234 |
| abstract_inverted_index.advanced | 12 |
| abstract_inverted_index.backbone | 123 |
| abstract_inverted_index.estimate | 29 |
| abstract_inverted_index.features | 132 |
| abstract_inverted_index.gradient | 157 |
| abstract_inverted_index.learning | 80, 241 |
| abstract_inverted_index.limiting | 159 |
| abstract_inverted_index.methods. | 243 |
| abstract_inverted_index.minimize | 176 |
| abstract_inverted_index.modules. | 261 |
| abstract_inverted_index.proposed | 245, 260 |
| abstract_inverted_index.relative | 50 |
| abstract_inverted_index.training | 161 |
| abstract_inverted_index.vehicle. | 18 |
| abstract_inverted_index.(LIA-Net) | 125 |
| abstract_inverted_index.Extrinsic | 0 |
| abstract_inverted_index.accurate. | 69 |
| abstract_inverted_index.attention | 121 |
| abstract_inverted_index.essential | 8 |
| abstract_inverted_index.extrinsic | 31, 73, 83, 148 |
| abstract_inverted_index.features. | 111 |
| abstract_inverted_index.intensity | 102, 120, 188 |
| abstract_inverted_index.parameter | 74 |
| abstract_inverted_index.projected | 180 |
| abstract_inverted_index.real-time | 251 |
| abstract_inverted_index.scenario, | 48 |
| abstract_inverted_index.training, | 144 |
| abstract_inverted_index.vanishing | 156 |
| abstract_inverted_index.Comparison | 224 |
| abstract_inverted_index.LIA-SC-Net | 232 |
| abstract_inverted_index.Lambertian | 90 |
| abstract_inverted_index.accurately | 200 |
| abstract_inverted_index.difference | 178 |
| abstract_inverted_index.parameters | 32, 149 |
| abstract_inverted_index.perception | 13 |
| abstract_inverted_index.precision. | 35 |
| abstract_inverted_index.reflection | 91 |
| abstract_inverted_index.situation, | 22 |
| abstract_inverted_index.structural | 171 |
| abstract_inverted_index.LIA-SC-Net. | 223 |
| abstract_inverted_index.accumulated | 59 |
| abstract_inverted_index.application | 14, 41 |
| abstract_inverted_index.calibration | 1, 24, 65, 84, 131, 221, 237 |
| abstract_inverted_index.co-observed | 130 |
| abstract_inverted_index.consistency | 172 |
| abstract_inverted_index.convolution | 216 |
| abstract_inverted_index.demonstrate | 230 |
| abstract_inverted_index.efficiency. | 162 |
| abstract_inverted_index.experiments | 225 |
| abstract_inverted_index.intelligent | 17 |
| abstract_inverted_index.possibility | 106 |
| abstract_inverted_index.significant | 129 |
| abstract_inverted_index.LiDAR-camera | 4, 43 |
| abstract_inverted_index.performance. | 252 |
| abstract_inverted_index.conveniently, | 75 |
| abstract_inverted_index.effectiveness | 258 |
| abstract_inverted_index.state-of-the-art | 240 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5101807673 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I47720641 |
| citation_normalized_percentile.value | 0.92230616 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |