Online Learning Algorithm for LSSVM Based Modeling with Time-varying Kernels Article Swipe
YOU?
·
· 2018
· Open Access
·
· DOI: https://doi.org/10.1016/j.ifacol.2018.09.354
Online learning based Least Squares Support Vector Machine (LSSVM) can address the modeling problems of a time-varying process, which has a few advantages such as low training time and good general. Nevertheless, many of online learning algorithms cannot adapt the kernel parameters for the time-varying characteristic, so the inferred LSSVM models are low-accuracy. An online learning algorithm with time-varying kernels is proposed to improve online training accuracy of LSSVM model. The kernel parameters are optimized along with time-varying process using updating samples data. To achieve reliable performance during online optimization, we propose a controllable metaheuristic algorithm that adopts a contracted particle swarm optimization with an elaborate chaotic operator. The proposed modeling approach is utilized in the energy efficiency prediction of the electrical smelting process, and the experimental results show that the proposed online learning algorithm can both improve the accuracy of LSSVM model and ensure low online training time.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.ifacol.2018.09.354
- OA Status
- diamond
- Cited By
- 4
- References
- 13
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2897420287
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2897420287Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.ifacol.2018.09.354Digital Object Identifier
- Title
-
Online Learning Algorithm for LSSVM Based Modeling with Time-varying KernelsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2018Year of publication
- Publication date
-
2018-01-01Full publication date if available
- Authors
-
Weijian Kong, Jinliang DingList of authors in order
- Landing page
-
https://doi.org/10.1016/j.ifacol.2018.09.354Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.ifacol.2018.09.354Direct OA link when available
- Concepts
-
Computer science, Particle swarm optimization, Process (computing), Kernel (algebra), Machine learning, Least squares support vector machine, Artificial intelligence, Algorithm, Support vector machine, Online learning, Online algorithm, Data mining, Mathematics, World Wide Web, Combinatorics, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2023: 2, 2022: 1Per-year citation counts (last 5 years)
- References (count)
-
13Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2897420287 |
|---|---|
| doi | https://doi.org/10.1016/j.ifacol.2018.09.354 |
| ids.doi | https://doi.org/10.1016/j.ifacol.2018.09.354 |
| ids.mag | 2897420287 |
| ids.openalex | https://openalex.org/W2897420287 |
| fwci | 0.0 |
| type | article |
| title | Online Learning Algorithm for LSSVM Based Modeling with Time-varying Kernels |
| biblio.issue | 18 |
| biblio.volume | 51 |
| biblio.last_page | 630 |
| biblio.first_page | 626 |
| topics[0].id | https://openalex.org/T11052 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9976000189781189 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Energy Load and Power Forecasting |
| topics[1].id | https://openalex.org/T11344 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9944999814033508 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2215 |
| topics[1].subfield.display_name | Building and Construction |
| topics[1].display_name | Traffic Prediction and Management Techniques |
| topics[2].id | https://openalex.org/T12676 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9907000064849854 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Machine Learning and ELM |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6836323738098145 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C85617194 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6243548393249512 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2072794 |
| concepts[1].display_name | Particle swarm optimization |
| concepts[2].id | https://openalex.org/C98045186 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5592054128646851 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[2].display_name | Process (computing) |
| concepts[3].id | https://openalex.org/C74193536 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5556681156158447 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q574844 |
| concepts[3].display_name | Kernel (algebra) |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5439815521240234 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| concepts[5].id | https://openalex.org/C145828037 |
| concepts[5].level | 3 |
| concepts[5].score | 0.5350466966629028 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q17086219 |
| concepts[5].display_name | Least squares support vector machine |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.5112340450286865 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C11413529 |
| concepts[7].level | 1 |
| concepts[7].score | 0.507509171962738 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[7].display_name | Algorithm |
| concepts[8].id | https://openalex.org/C12267149 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4969814121723175 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[8].display_name | Support vector machine |
| concepts[9].id | https://openalex.org/C2986087404 |
| concepts[9].level | 2 |
| concepts[9].score | 0.43394750356674194 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q15946010 |
| concepts[9].display_name | Online learning |
| concepts[10].id | https://openalex.org/C196921405 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4120938777923584 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q786431 |
| concepts[10].display_name | Online algorithm |
| concepts[11].id | https://openalex.org/C124101348 |
| concepts[11].level | 1 |
| concepts[11].score | 0.34409767389297485 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[11].display_name | Data mining |
| concepts[12].id | https://openalex.org/C33923547 |
| concepts[12].level | 0 |
| concepts[12].score | 0.13603639602661133 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[12].display_name | Mathematics |
| concepts[13].id | https://openalex.org/C136764020 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q466 |
| concepts[13].display_name | World Wide Web |
| concepts[14].id | https://openalex.org/C114614502 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[14].display_name | Combinatorics |
| concepts[15].id | https://openalex.org/C111919701 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[15].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.6836323738098145 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/particle-swarm-optimization |
| keywords[1].score | 0.6243548393249512 |
| keywords[1].display_name | Particle swarm optimization |
| keywords[2].id | https://openalex.org/keywords/process |
| keywords[2].score | 0.5592054128646851 |
| keywords[2].display_name | Process (computing) |
| keywords[3].id | https://openalex.org/keywords/kernel |
| keywords[3].score | 0.5556681156158447 |
| keywords[3].display_name | Kernel (algebra) |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.5439815521240234 |
| keywords[4].display_name | Machine learning |
| keywords[5].id | https://openalex.org/keywords/least-squares-support-vector-machine |
| keywords[5].score | 0.5350466966629028 |
| keywords[5].display_name | Least squares support vector machine |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.5112340450286865 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/algorithm |
| keywords[7].score | 0.507509171962738 |
| keywords[7].display_name | Algorithm |
| keywords[8].id | https://openalex.org/keywords/support-vector-machine |
| keywords[8].score | 0.4969814121723175 |
| keywords[8].display_name | Support vector machine |
| keywords[9].id | https://openalex.org/keywords/online-learning |
| keywords[9].score | 0.43394750356674194 |
| keywords[9].display_name | Online learning |
| keywords[10].id | https://openalex.org/keywords/online-algorithm |
| keywords[10].score | 0.4120938777923584 |
| keywords[10].display_name | Online algorithm |
| keywords[11].id | https://openalex.org/keywords/data-mining |
| keywords[11].score | 0.34409767389297485 |
| keywords[11].display_name | Data mining |
| keywords[12].id | https://openalex.org/keywords/mathematics |
| keywords[12].score | 0.13603639602661133 |
| keywords[12].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.1016/j.ifacol.2018.09.354 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2898405271 |
| locations[0].source.issn | 2405-8963, 2405-8971 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2405-8963 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | IFAC-PapersOnLine |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IFAC-PapersOnLine |
| locations[0].landing_page_url | https://doi.org/10.1016/j.ifacol.2018.09.354 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5102903128 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9030-8778 |
| authorships[0].author.display_name | Weijian Kong |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I181326427 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Automation, Donghua University, Shanghai, China |
| authorships[0].institutions[0].id | https://openalex.org/I181326427 |
| authorships[0].institutions[0].ror | https://ror.org/035psfh38 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I181326427 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Donghua University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Weijian Kong |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Department of Automation, Donghua University, Shanghai, China |
| authorships[1].author.id | https://openalex.org/A5022740106 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3735-0672 |
| authorships[1].author.display_name | Jinliang Ding |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I9224756 |
| authorships[1].affiliations[0].raw_affiliation_string | State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University Shenyang, China |
| authorships[1].institutions[0].id | https://openalex.org/I9224756 |
| authorships[1].institutions[0].ror | https://ror.org/03awzbc87 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I9224756 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Northeastern University |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Jinliang Ding |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University Shenyang, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.ifacol.2018.09.354 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Online Learning Algorithm for LSSVM Based Modeling with Time-varying Kernels |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11052 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9976000189781189 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Energy Load and Power Forecasting |
| related_works | https://openalex.org/W3195168932, https://openalex.org/W1996541855, https://openalex.org/W2129327131, https://openalex.org/W4316658362, https://openalex.org/W2738863676, https://openalex.org/W2374977502, https://openalex.org/W2111402576, https://openalex.org/W2096504223, https://openalex.org/W1974874431, https://openalex.org/W1964874921 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2022 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1016/j.ifacol.2018.09.354 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2898405271 |
| best_oa_location.source.issn | 2405-8963, 2405-8971 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2405-8963 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | IFAC-PapersOnLine |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IFAC-PapersOnLine |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.ifacol.2018.09.354 |
| primary_location.id | doi:10.1016/j.ifacol.2018.09.354 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2898405271 |
| primary_location.source.issn | 2405-8963, 2405-8971 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2405-8963 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | IFAC-PapersOnLine |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IFAC-PapersOnLine |
| primary_location.landing_page_url | https://doi.org/10.1016/j.ifacol.2018.09.354 |
| publication_date | 2018-01-01 |
| publication_year | 2018 |
| referenced_works | https://openalex.org/W2152793312, https://openalex.org/W2230380482, https://openalex.org/W2071256736, https://openalex.org/W1985368534, https://openalex.org/W2157069634, https://openalex.org/W2045657291, https://openalex.org/W2087754676, https://openalex.org/W2003927891, https://openalex.org/W2083238230, https://openalex.org/W2560179108, https://openalex.org/W2088088299, https://openalex.org/W2087607043, https://openalex.org/W2013850631 |
| referenced_works_count | 13 |
| abstract_inverted_index.a | 15, 20, 92, 98 |
| abstract_inverted_index.An | 53 |
| abstract_inverted_index.To | 83 |
| abstract_inverted_index.an | 104 |
| abstract_inverted_index.as | 24 |
| abstract_inverted_index.in | 114 |
| abstract_inverted_index.is | 60, 112 |
| abstract_inverted_index.of | 14, 33, 67, 119, 140 |
| abstract_inverted_index.so | 46 |
| abstract_inverted_index.to | 62 |
| abstract_inverted_index.we | 90 |
| abstract_inverted_index.The | 70, 108 |
| abstract_inverted_index.and | 28, 124, 143 |
| abstract_inverted_index.are | 51, 73 |
| abstract_inverted_index.can | 9, 135 |
| abstract_inverted_index.few | 21 |
| abstract_inverted_index.for | 42 |
| abstract_inverted_index.has | 19 |
| abstract_inverted_index.low | 25, 145 |
| abstract_inverted_index.the | 11, 39, 43, 47, 115, 120, 125, 130, 138 |
| abstract_inverted_index.both | 136 |
| abstract_inverted_index.good | 29 |
| abstract_inverted_index.many | 32 |
| abstract_inverted_index.show | 128 |
| abstract_inverted_index.such | 23 |
| abstract_inverted_index.that | 96, 129 |
| abstract_inverted_index.time | 27 |
| abstract_inverted_index.with | 57, 76, 103 |
| abstract_inverted_index.LSSVM | 49, 68, 141 |
| abstract_inverted_index.Least | 3 |
| abstract_inverted_index.adapt | 38 |
| abstract_inverted_index.along | 75 |
| abstract_inverted_index.based | 2 |
| abstract_inverted_index.data. | 82 |
| abstract_inverted_index.model | 142 |
| abstract_inverted_index.swarm | 101 |
| abstract_inverted_index.time. | 148 |
| abstract_inverted_index.using | 79 |
| abstract_inverted_index.which | 18 |
| abstract_inverted_index.Online | 0 |
| abstract_inverted_index.Vector | 6 |
| abstract_inverted_index.adopts | 97 |
| abstract_inverted_index.cannot | 37 |
| abstract_inverted_index.during | 87 |
| abstract_inverted_index.energy | 116 |
| abstract_inverted_index.ensure | 144 |
| abstract_inverted_index.kernel | 40, 71 |
| abstract_inverted_index.model. | 69 |
| abstract_inverted_index.models | 50 |
| abstract_inverted_index.online | 34, 54, 64, 88, 132, 146 |
| abstract_inverted_index.(LSSVM) | 8 |
| abstract_inverted_index.Machine | 7 |
| abstract_inverted_index.Squares | 4 |
| abstract_inverted_index.Support | 5 |
| abstract_inverted_index.achieve | 84 |
| abstract_inverted_index.address | 10 |
| abstract_inverted_index.chaotic | 106 |
| abstract_inverted_index.improve | 63, 137 |
| abstract_inverted_index.kernels | 59 |
| abstract_inverted_index.process | 78 |
| abstract_inverted_index.propose | 91 |
| abstract_inverted_index.results | 127 |
| abstract_inverted_index.samples | 81 |
| abstract_inverted_index.accuracy | 66, 139 |
| abstract_inverted_index.approach | 111 |
| abstract_inverted_index.general. | 30 |
| abstract_inverted_index.inferred | 48 |
| abstract_inverted_index.learning | 1, 35, 55, 133 |
| abstract_inverted_index.modeling | 12, 110 |
| abstract_inverted_index.particle | 100 |
| abstract_inverted_index.problems | 13 |
| abstract_inverted_index.process, | 17, 123 |
| abstract_inverted_index.proposed | 61, 109, 131 |
| abstract_inverted_index.reliable | 85 |
| abstract_inverted_index.smelting | 122 |
| abstract_inverted_index.training | 26, 65, 147 |
| abstract_inverted_index.updating | 80 |
| abstract_inverted_index.utilized | 113 |
| abstract_inverted_index.algorithm | 56, 95, 134 |
| abstract_inverted_index.elaborate | 105 |
| abstract_inverted_index.operator. | 107 |
| abstract_inverted_index.optimized | 74 |
| abstract_inverted_index.advantages | 22 |
| abstract_inverted_index.algorithms | 36 |
| abstract_inverted_index.contracted | 99 |
| abstract_inverted_index.efficiency | 117 |
| abstract_inverted_index.electrical | 121 |
| abstract_inverted_index.parameters | 41, 72 |
| abstract_inverted_index.prediction | 118 |
| abstract_inverted_index.performance | 86 |
| abstract_inverted_index.controllable | 93 |
| abstract_inverted_index.experimental | 126 |
| abstract_inverted_index.optimization | 102 |
| abstract_inverted_index.time-varying | 16, 44, 58, 77 |
| abstract_inverted_index.Nevertheless, | 31 |
| abstract_inverted_index.low-accuracy. | 52 |
| abstract_inverted_index.metaheuristic | 94 |
| abstract_inverted_index.optimization, | 89 |
| abstract_inverted_index.characteristic, | 45 |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5102903128, https://openalex.org/A5022740106 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| corresponding_institution_ids | https://openalex.org/I181326427, https://openalex.org/I9224756 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.9100000262260437 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile.value | 0.10348192 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |