Online Learning in Contextual Bandits using Gated Linear Networks Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2002.11611
We introduce a new and completely online contextual bandit algorithm called Gated Linear Contextual Bandits (GLCB). This algorithm is based on Gated Linear Networks (GLNs), a recently introduced deep learning architecture with properties well-suited to the online setting. Leveraging data-dependent gating properties of the GLN we are able to estimate prediction uncertainty with effectively zero algorithmic overhead. We empirically evaluate GLCB compared to 9 state-of-the-art algorithms that leverage deep neural networks, on a standard benchmark suite of discrete and continuous contextual bandit problems. GLCB obtains median first-place despite being the only online method, and we further support these results with a theoretical study of its convergence properties.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2002.11611
- https://arxiv.org/pdf/2002.11611
- OA Status
- green
- Cited By
- 8
- References
- 26
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3006992011
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3006992011Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2002.11611Digital Object Identifier
- Title
-
Online Learning in Contextual Bandits using Gated Linear NetworksWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-02-21Full publication date if available
- Authors
-
Eren Sezener, Marcus Hütter, David Budden, Jianan Wang, Joel VenessList of authors in order
- Landing page
-
https://arxiv.org/abs/2002.11611Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2002.11611Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2002.11611Direct OA link when available
- Concepts
-
Computer science, Artificial intelligence, Online learning, Machine learning, World Wide WebTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
8Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 1, 2021: 4, 2020: 3Per-year citation counts (last 5 years)
- References (count)
-
26Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3006992011 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2002.11611 |
| ids.doi | https://doi.org/10.48550/arxiv.2002.11611 |
| ids.mag | 3006992011 |
| ids.openalex | https://openalex.org/W3006992011 |
| fwci | |
| type | preprint |
| title | Online Learning in Contextual Bandits using Gated Linear Networks |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12101 |
| topics[0].field.id | https://openalex.org/fields/18 |
| topics[0].field.display_name | Decision Sciences |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1803 |
| topics[0].subfield.display_name | Management Science and Operations Research |
| topics[0].display_name | Advanced Bandit Algorithms Research |
| topics[1].id | https://openalex.org/T12761 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9976000189781189 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Data Stream Mining Techniques |
| topics[2].id | https://openalex.org/T12072 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9915000200271606 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Machine Learning and Algorithms |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.5617055892944336 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.4617839455604553 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C2986087404 |
| concepts[2].level | 2 |
| concepts[2].score | 0.41906070709228516 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q15946010 |
| concepts[2].display_name | Online learning |
| concepts[3].id | https://openalex.org/C119857082 |
| concepts[3].level | 1 |
| concepts[3].score | 0.3609429597854614 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[3].display_name | Machine learning |
| concepts[4].id | https://openalex.org/C136764020 |
| concepts[4].level | 1 |
| concepts[4].score | 0.09276625514030457 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q466 |
| concepts[4].display_name | World Wide Web |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.5617055892944336 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.4617839455604553 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/online-learning |
| keywords[2].score | 0.41906070709228516 |
| keywords[2].display_name | Online learning |
| keywords[3].id | https://openalex.org/keywords/machine-learning |
| keywords[3].score | 0.3609429597854614 |
| keywords[3].display_name | Machine learning |
| keywords[4].id | https://openalex.org/keywords/world-wide-web |
| keywords[4].score | 0.09276625514030457 |
| keywords[4].display_name | World Wide Web |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2002.11611 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2002.11611 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2002.11611 |
| locations[1].id | doi:10.48550/arxiv.2002.11611 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2002.11611 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5088896420 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Eren Sezener |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I1291425158 |
| authorships[0].affiliations[0].raw_affiliation_string | Google,,,,, |
| authorships[0].institutions[0].id | https://openalex.org/I1291425158 |
| authorships[0].institutions[0].ror | https://ror.org/00njsd438 |
| authorships[0].institutions[0].type | company |
| authorships[0].institutions[0].lineage | https://openalex.org/I1291425158, https://openalex.org/I4210128969 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Google (United States) |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Eren Sezener |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Google,,,,, |
| authorships[1].author.id | https://openalex.org/A5073944062 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3263-4097 |
| authorships[1].author.display_name | Marcus Hütter |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Marcus Hutter |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5003238807 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4372-8985 |
| authorships[2].author.display_name | David Budden |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | David Budden |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100458008 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-4161-1687 |
| authorships[3].author.display_name | Jianan Wang |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Jianan Wang |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5060709021 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Joel Veness |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Joel Veness |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2002.11611 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Online Learning in Contextual Bandits using Gated Linear Networks |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12101 |
| primary_topic.field.id | https://openalex.org/fields/18 |
| primary_topic.field.display_name | Decision Sciences |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1803 |
| primary_topic.subfield.display_name | Management Science and Operations Research |
| primary_topic.display_name | Advanced Bandit Algorithms Research |
| related_works | https://openalex.org/W2961085424, https://openalex.org/W4306674287, https://openalex.org/W3046775127, https://openalex.org/W3107602296, https://openalex.org/W3170094116, https://openalex.org/W4386462264, https://openalex.org/W4364306694, https://openalex.org/W4312192474, https://openalex.org/W4283697347, https://openalex.org/W4210805261 |
| cited_by_count | 8 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2021 |
| counts_by_year[1].cited_by_count | 4 |
| counts_by_year[2].year | 2020 |
| counts_by_year[2].cited_by_count | 3 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2002.11611 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2002.11611 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2002.11611 |
| primary_location.id | pmh:oai:arXiv.org:2002.11611 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2002.11611 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2002.11611 |
| publication_date | 2020-02-21 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2962973320, https://openalex.org/W1625390266, https://openalex.org/W2963276097, https://openalex.org/W2164411961, https://openalex.org/W2561776174, https://openalex.org/W1969276875, https://openalex.org/W2116064496, https://openalex.org/W3174224867, https://openalex.org/W2963423916, https://openalex.org/W2121391028, https://openalex.org/W2962723954, https://openalex.org/W2112420033, https://openalex.org/W2148825261, https://openalex.org/W2259695933, https://openalex.org/W2963080043, https://openalex.org/W1798702550, https://openalex.org/W2771657877, https://openalex.org/W2964330179, https://openalex.org/W2168405694, https://openalex.org/W3098842019, https://openalex.org/W2951266961, https://openalex.org/W1988526405, https://openalex.org/W2963938771, https://openalex.org/W2963024489, https://openalex.org/W2012833704, https://openalex.org/W2095705004 |
| referenced_works_count | 26 |
| abstract_inverted_index.9 | 63 |
| abstract_inverted_index.a | 2, 25, 72, 100 |
| abstract_inverted_index.We | 0, 57 |
| abstract_inverted_index.is | 18 |
| abstract_inverted_index.of | 42, 76, 103 |
| abstract_inverted_index.on | 20, 71 |
| abstract_inverted_index.to | 34, 48, 62 |
| abstract_inverted_index.we | 45, 94 |
| abstract_inverted_index.GLN | 44 |
| abstract_inverted_index.and | 4, 78, 93 |
| abstract_inverted_index.are | 46 |
| abstract_inverted_index.its | 104 |
| abstract_inverted_index.new | 3 |
| abstract_inverted_index.the | 35, 43, 89 |
| abstract_inverted_index.GLCB | 60, 83 |
| abstract_inverted_index.This | 16 |
| abstract_inverted_index.able | 47 |
| abstract_inverted_index.deep | 28, 68 |
| abstract_inverted_index.only | 90 |
| abstract_inverted_index.that | 66 |
| abstract_inverted_index.with | 31, 52, 99 |
| abstract_inverted_index.zero | 54 |
| abstract_inverted_index.Gated | 11, 21 |
| abstract_inverted_index.based | 19 |
| abstract_inverted_index.being | 88 |
| abstract_inverted_index.study | 102 |
| abstract_inverted_index.suite | 75 |
| abstract_inverted_index.these | 97 |
| abstract_inverted_index.Linear | 12, 22 |
| abstract_inverted_index.bandit | 8, 81 |
| abstract_inverted_index.called | 10 |
| abstract_inverted_index.gating | 40 |
| abstract_inverted_index.median | 85 |
| abstract_inverted_index.neural | 69 |
| abstract_inverted_index.online | 6, 36, 91 |
| abstract_inverted_index.(GLCB). | 15 |
| abstract_inverted_index.(GLNs), | 24 |
| abstract_inverted_index.Bandits | 14 |
| abstract_inverted_index.despite | 87 |
| abstract_inverted_index.further | 95 |
| abstract_inverted_index.method, | 92 |
| abstract_inverted_index.obtains | 84 |
| abstract_inverted_index.results | 98 |
| abstract_inverted_index.support | 96 |
| abstract_inverted_index.Networks | 23 |
| abstract_inverted_index.compared | 61 |
| abstract_inverted_index.discrete | 77 |
| abstract_inverted_index.estimate | 49 |
| abstract_inverted_index.evaluate | 59 |
| abstract_inverted_index.learning | 29 |
| abstract_inverted_index.leverage | 67 |
| abstract_inverted_index.recently | 26 |
| abstract_inverted_index.setting. | 37 |
| abstract_inverted_index.standard | 73 |
| abstract_inverted_index.algorithm | 9, 17 |
| abstract_inverted_index.benchmark | 74 |
| abstract_inverted_index.introduce | 1 |
| abstract_inverted_index.networks, | 70 |
| abstract_inverted_index.overhead. | 56 |
| abstract_inverted_index.problems. | 82 |
| abstract_inverted_index.Contextual | 13 |
| abstract_inverted_index.Leveraging | 38 |
| abstract_inverted_index.algorithms | 65 |
| abstract_inverted_index.completely | 5 |
| abstract_inverted_index.contextual | 7, 80 |
| abstract_inverted_index.continuous | 79 |
| abstract_inverted_index.introduced | 27 |
| abstract_inverted_index.prediction | 50 |
| abstract_inverted_index.properties | 32, 41 |
| abstract_inverted_index.algorithmic | 55 |
| abstract_inverted_index.convergence | 105 |
| abstract_inverted_index.effectively | 53 |
| abstract_inverted_index.empirically | 58 |
| abstract_inverted_index.first-place | 86 |
| abstract_inverted_index.properties. | 106 |
| abstract_inverted_index.theoretical | 101 |
| abstract_inverted_index.uncertainty | 51 |
| abstract_inverted_index.well-suited | 33 |
| abstract_inverted_index.architecture | 30 |
| abstract_inverted_index.data-dependent | 39 |
| abstract_inverted_index.state-of-the-art | 64 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |