Online Machine-Learning-Based Event Selection for COMET Phase-I Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.3390/psf2023008032
In many modern particle physics experiments, high-rate data handling is one of the most critical challenges due to the increase in particle intensity required to achieve higher statistics. We will tackle the challenge in the COMET experiment by developing the sub-microseconds ultra-fast machine learning (ML) algorithm implemented inside FPGAs to search for the lepton flavour violation process, a μ-e conversion, using the world’s most intense muon beam. Our previous study showed that a trigger algorithm based on a gradient-boosted decision tree will realise the sufficient trigger performance within 3.2 μs with a cut-based event classification. In this paper, we further investigated neural network algorithms as event classifications. For the feasibility test, a multi-layer perceptron (MLP) model was implemented inside the FPGA, and the preliminary results are presented.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/psf2023008032
- https://www.mdpi.com/2673-9984/8/1/32/pdf?version=1691055355
- OA Status
- gold
- Cited By
- 1
- References
- 10
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4385546848
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4385546848Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/psf2023008032Digital Object Identifier
- Title
-
Online Machine-Learning-Based Event Selection for COMET Phase-IWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-08-03Full publication date if available
- Authors
-
Yuki Fujii, Masaki Miyataki, M. J. Lee, Y. Nakazawa, Liam Pinchbeck, K. Ueno, Hisataka YoshidaList of authors in order
- Landing page
-
https://doi.org/10.3390/psf2023008032Publisher landing page
- PDF URL
-
https://www.mdpi.com/2673-9984/8/1/32/pdf?version=1691055355Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2673-9984/8/1/32/pdf?version=1691055355Direct OA link when available
- Concepts
-
Comet, Computer science, Selection (genetic algorithm), Event (particle physics), Artificial intelligence, Astrobiology, Physics, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 1Per-year citation counts (last 5 years)
- References (count)
-
10Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4385546848 |
|---|---|
| doi | https://doi.org/10.3390/psf2023008032 |
| ids.doi | https://doi.org/10.3390/psf2023008032 |
| ids.openalex | https://openalex.org/W4385546848 |
| fwci | 0.2488531 |
| type | article |
| title | Online Machine-Learning-Based Event Selection for COMET Phase-I |
| awards[0].id | https://openalex.org/G6037707253 |
| awards[0].funder_id | https://openalex.org/F4320334704 |
| awards[0].display_name | |
| awards[0].funder_award_id | DP200101562 |
| awards[0].funder_display_name | Australian Research Council |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 32 |
| biblio.first_page | 32 |
| topics[0].id | https://openalex.org/T10876 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9797000288963318 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2207 |
| topics[0].subfield.display_name | Control and Systems Engineering |
| topics[0].display_name | Fault Detection and Control Systems |
| topics[1].id | https://openalex.org/T12111 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9251000285148621 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2209 |
| topics[1].subfield.display_name | Industrial and Manufacturing Engineering |
| topics[1].display_name | Industrial Vision Systems and Defect Detection |
| topics[2].id | https://openalex.org/T11443 |
| topics[2].field.id | https://openalex.org/fields/18 |
| topics[2].field.display_name | Decision Sciences |
| topics[2].score | 0.9046000242233276 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1804 |
| topics[2].subfield.display_name | Statistics, Probability and Uncertainty |
| topics[2].display_name | Advanced Statistical Process Monitoring |
| funders[0].id | https://openalex.org/F4320334704 |
| funders[0].ror | https://ror.org/05mmh0f86 |
| funders[0].display_name | Australian Research Council |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C94081185 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7480583190917969 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q3559 |
| concepts[0].display_name | Comet |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7096198797225952 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C81917197 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6146560311317444 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q628760 |
| concepts[2].display_name | Selection (genetic algorithm) |
| concepts[3].id | https://openalex.org/C2779662365 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4895966649055481 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q5416694 |
| concepts[3].display_name | Event (particle physics) |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3766419291496277 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C87355193 |
| concepts[5].level | 1 |
| concepts[5].score | 0.1587514579296112 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q411 |
| concepts[5].display_name | Astrobiology |
| concepts[6].id | https://openalex.org/C121332964 |
| concepts[6].level | 0 |
| concepts[6].score | 0.07374489307403564 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[6].display_name | Physics |
| concepts[7].id | https://openalex.org/C62520636 |
| concepts[7].level | 1 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[7].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/comet |
| keywords[0].score | 0.7480583190917969 |
| keywords[0].display_name | Comet |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7096198797225952 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/selection |
| keywords[2].score | 0.6146560311317444 |
| keywords[2].display_name | Selection (genetic algorithm) |
| keywords[3].id | https://openalex.org/keywords/event |
| keywords[3].score | 0.4895966649055481 |
| keywords[3].display_name | Event (particle physics) |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.3766419291496277 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/astrobiology |
| keywords[5].score | 0.1587514579296112 |
| keywords[5].display_name | Astrobiology |
| keywords[6].id | https://openalex.org/keywords/physics |
| keywords[6].score | 0.07374489307403564 |
| keywords[6].display_name | Physics |
| language | en |
| locations[0].id | doi:10.3390/psf2023008032 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2673-9984/8/1/32/pdf?version=1691055355 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | NuFACT 2022 |
| locations[0].landing_page_url | https://doi.org/10.3390/psf2023008032 |
| locations[1].id | pmh:oai:mdpi.com:/2673-9984/8/1/32/ |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400947 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | MDPI (MDPI AG) |
| locations[1].source.host_organization | https://openalex.org/I4210097602 |
| locations[1].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[1].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | Text |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Physical Sciences Forum; Volume 8; Issue 1; Pages: 32 |
| locations[1].landing_page_url | https://dx.doi.org/10.3390/psf2023008032 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5002773688 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0813-3065 |
| authorships[0].author.display_name | Yuki Fujii |
| authorships[0].countries | AU |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I56590836 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Physics and Astronomy, Monash University, Clayton, VIC 3800, Australia |
| authorships[0].institutions[0].id | https://openalex.org/I56590836 |
| authorships[0].institutions[0].ror | https://ror.org/02bfwt286 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I56590836 |
| authorships[0].institutions[0].country_code | AU |
| authorships[0].institutions[0].display_name | Monash University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yuki Fujii |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | School of Physics and Astronomy, Monash University, Clayton, VIC 3800, Australia |
| authorships[1].author.id | https://openalex.org/A5092591603 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Masaki Miyataki |
| authorships[1].countries | JP |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I98285908 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Physics, Osaka University, Osaka 565-0871, Japan |
| authorships[1].institutions[0].id | https://openalex.org/I98285908 |
| authorships[1].institutions[0].ror | https://ror.org/035t8zc32 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I98285908 |
| authorships[1].institutions[0].country_code | JP |
| authorships[1].institutions[0].display_name | The University of Osaka |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Masaki Miyataki |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Physics, Osaka University, Osaka 565-0871, Japan |
| authorships[2].author.id | https://openalex.org/A5045277475 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4528-4601 |
| authorships[2].author.display_name | M. J. Lee |
| authorships[2].countries | KR |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I848706 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Physics, Sungkyunkwan University, Suwon 16419, Republic of Korea |
| authorships[2].institutions[0].id | https://openalex.org/I848706 |
| authorships[2].institutions[0].ror | https://ror.org/04q78tk20 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I848706 |
| authorships[2].institutions[0].country_code | KR |
| authorships[2].institutions[0].display_name | Sungkyunkwan University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | MyeongJae Lee |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Physics, Sungkyunkwan University, Suwon 16419, Republic of Korea |
| authorships[3].author.id | https://openalex.org/A5014572140 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6271-5808 |
| authorships[3].author.display_name | Y. Nakazawa |
| authorships[3].countries | JP |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I138728355 |
| authorships[3].affiliations[0].raw_affiliation_string | Institute for Particle and Nuclear Science, High Energy Accelerator Research Organization, Tsukuba 305-0801, Japan |
| authorships[3].institutions[0].id | https://openalex.org/I138728355 |
| authorships[3].institutions[0].ror | https://ror.org/01g5y5k24 |
| authorships[3].institutions[0].type | facility |
| authorships[3].institutions[0].lineage | https://openalex.org/I1319490839, https://openalex.org/I138728355 |
| authorships[3].institutions[0].country_code | JP |
| authorships[3].institutions[0].display_name | High Energy Accelerator Research Organization |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yu Nakazawa |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Institute for Particle and Nuclear Science, High Energy Accelerator Research Organization, Tsukuba 305-0801, Japan |
| authorships[4].author.id | https://openalex.org/A5092591604 |
| authorships[4].author.orcid | https://orcid.org/0009-0009-6802-2461 |
| authorships[4].author.display_name | Liam Pinchbeck |
| authorships[4].countries | AU |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I56590836 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Physics and Astronomy, Monash University, Clayton, VIC 3800, Australia |
| authorships[4].institutions[0].id | https://openalex.org/I56590836 |
| authorships[4].institutions[0].ror | https://ror.org/02bfwt286 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I56590836 |
| authorships[4].institutions[0].country_code | AU |
| authorships[4].institutions[0].display_name | Monash University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Liam Pinchbeck |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | School of Physics and Astronomy, Monash University, Clayton, VIC 3800, Australia |
| authorships[5].author.id | https://openalex.org/A5101471744 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-4791-5203 |
| authorships[5].author.display_name | K. Ueno |
| authorships[5].countries | JP |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I98285908 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Physics, Osaka University, Osaka 565-0871, Japan |
| authorships[5].affiliations[1].institution_ids | https://openalex.org/I138728355 |
| authorships[5].affiliations[1].raw_affiliation_string | Institute for Particle and Nuclear Science, High Energy Accelerator Research Organization, Tsukuba 305-0801, Japan |
| authorships[5].institutions[0].id | https://openalex.org/I138728355 |
| authorships[5].institutions[0].ror | https://ror.org/01g5y5k24 |
| authorships[5].institutions[0].type | facility |
| authorships[5].institutions[0].lineage | https://openalex.org/I1319490839, https://openalex.org/I138728355 |
| authorships[5].institutions[0].country_code | JP |
| authorships[5].institutions[0].display_name | High Energy Accelerator Research Organization |
| authorships[5].institutions[1].id | https://openalex.org/I98285908 |
| authorships[5].institutions[1].ror | https://ror.org/035t8zc32 |
| authorships[5].institutions[1].type | education |
| authorships[5].institutions[1].lineage | https://openalex.org/I98285908 |
| authorships[5].institutions[1].country_code | JP |
| authorships[5].institutions[1].display_name | The University of Osaka |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Kazuki Ueno |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Physics, Osaka University, Osaka 565-0871, Japan, Institute for Particle and Nuclear Science, High Energy Accelerator Research Organization, Tsukuba 305-0801, Japan |
| authorships[6].author.id | https://openalex.org/A5077398120 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-7034-6360 |
| authorships[6].author.display_name | Hisataka Yoshida |
| authorships[6].countries | JP |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I98285908 |
| authorships[6].affiliations[0].raw_affiliation_string | Research Center for Nuclear Physics, Osaka University, Osaka 567-0047, Japan |
| authorships[6].institutions[0].id | https://openalex.org/I98285908 |
| authorships[6].institutions[0].ror | https://ror.org/035t8zc32 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I98285908 |
| authorships[6].institutions[0].country_code | JP |
| authorships[6].institutions[0].display_name | The University of Osaka |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Hisataka Yoshida |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Research Center for Nuclear Physics, Osaka University, Osaka 567-0047, Japan |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2673-9984/8/1/32/pdf?version=1691055355 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2023-08-04T00:00:00 |
| display_name | Online Machine-Learning-Based Event Selection for COMET Phase-I |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10876 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9797000288963318 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2207 |
| primary_topic.subfield.display_name | Control and Systems Engineering |
| primary_topic.display_name | Fault Detection and Control Systems |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2748952813, https://openalex.org/W3049149308, https://openalex.org/W3036339064, https://openalex.org/W3132686465, https://openalex.org/W3080418168, https://openalex.org/W2061245293, https://openalex.org/W3031501629, https://openalex.org/W2985497073, https://openalex.org/W3017696152 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3390/psf2023008032 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2673-9984/8/1/32/pdf?version=1691055355 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | NuFACT 2022 |
| best_oa_location.landing_page_url | https://doi.org/10.3390/psf2023008032 |
| primary_location.id | doi:10.3390/psf2023008032 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2673-9984/8/1/32/pdf?version=1691055355 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | NuFACT 2022 |
| primary_location.landing_page_url | https://doi.org/10.3390/psf2023008032 |
| publication_date | 2023-08-03 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W3011333185, https://openalex.org/W4382725164, https://openalex.org/W2026985507, https://openalex.org/W2971411842, https://openalex.org/W3171770457, https://openalex.org/W2115259674, https://openalex.org/W1983780892, https://openalex.org/W4310358971, https://openalex.org/W3104378799, https://openalex.org/W3099165410 |
| referenced_works_count | 10 |
| abstract_inverted_index.a | 57, 72, 77, 91, 111 |
| abstract_inverted_index.In | 0, 95 |
| abstract_inverted_index.We | 28 |
| abstract_inverted_index.as | 104 |
| abstract_inverted_index.by | 37 |
| abstract_inverted_index.in | 20, 33 |
| abstract_inverted_index.is | 9 |
| abstract_inverted_index.of | 11 |
| abstract_inverted_index.on | 76 |
| abstract_inverted_index.to | 17, 24, 49 |
| abstract_inverted_index.we | 98 |
| abstract_inverted_index.3.2 | 88 |
| abstract_inverted_index.For | 107 |
| abstract_inverted_index.Our | 67 |
| abstract_inverted_index.and | 121 |
| abstract_inverted_index.are | 125 |
| abstract_inverted_index.due | 16 |
| abstract_inverted_index.for | 51 |
| abstract_inverted_index.one | 10 |
| abstract_inverted_index.the | 12, 18, 31, 34, 39, 52, 61, 83, 108, 119, 122 |
| abstract_inverted_index.was | 116 |
| abstract_inverted_index.(ML) | 44 |
| abstract_inverted_index.data | 7 |
| abstract_inverted_index.many | 1 |
| abstract_inverted_index.most | 13, 63 |
| abstract_inverted_index.muon | 65 |
| abstract_inverted_index.that | 71 |
| abstract_inverted_index.this | 96 |
| abstract_inverted_index.tree | 80 |
| abstract_inverted_index.will | 29, 81 |
| abstract_inverted_index.with | 90 |
| abstract_inverted_index.(MLP) | 114 |
| abstract_inverted_index.COMET | 35 |
| abstract_inverted_index.FPGA, | 120 |
| abstract_inverted_index.FPGAs | 48 |
| abstract_inverted_index.based | 75 |
| abstract_inverted_index.beam. | 66 |
| abstract_inverted_index.event | 93, 105 |
| abstract_inverted_index.model | 115 |
| abstract_inverted_index.study | 69 |
| abstract_inverted_index.test, | 110 |
| abstract_inverted_index.using | 60 |
| abstract_inverted_index.higher | 26 |
| abstract_inverted_index.inside | 47, 118 |
| abstract_inverted_index.lepton | 53 |
| abstract_inverted_index.modern | 2 |
| abstract_inverted_index.neural | 101 |
| abstract_inverted_index.paper, | 97 |
| abstract_inverted_index.search | 50 |
| abstract_inverted_index.showed | 70 |
| abstract_inverted_index.tackle | 30 |
| abstract_inverted_index.within | 87 |
| abstract_inverted_index.achieve | 25 |
| abstract_inverted_index.flavour | 54 |
| abstract_inverted_index.further | 99 |
| abstract_inverted_index.intense | 64 |
| abstract_inverted_index.machine | 42 |
| abstract_inverted_index.network | 102 |
| abstract_inverted_index.physics | 4 |
| abstract_inverted_index.realise | 82 |
| abstract_inverted_index.results | 124 |
| abstract_inverted_index.trigger | 73, 85 |
| abstract_inverted_index.critical | 14 |
| abstract_inverted_index.decision | 79 |
| abstract_inverted_index.handling | 8 |
| abstract_inverted_index.increase | 19 |
| abstract_inverted_index.learning | 43 |
| abstract_inverted_index.particle | 3, 21 |
| abstract_inverted_index.previous | 68 |
| abstract_inverted_index.process, | 56 |
| abstract_inverted_index.required | 23 |
| abstract_inverted_index.μs | 89 |
| abstract_inverted_index.algorithm | 45, 74 |
| abstract_inverted_index.challenge | 32 |
| abstract_inverted_index.cut-based | 92 |
| abstract_inverted_index.high-rate | 6 |
| abstract_inverted_index.intensity | 22 |
| abstract_inverted_index.violation | 55 |
| abstract_inverted_index.μ-e | 58 |
| abstract_inverted_index.algorithms | 103 |
| abstract_inverted_index.challenges | 15 |
| abstract_inverted_index.developing | 38 |
| abstract_inverted_index.experiment | 36 |
| abstract_inverted_index.perceptron | 113 |
| abstract_inverted_index.presented. | 126 |
| abstract_inverted_index.sufficient | 84 |
| abstract_inverted_index.ultra-fast | 41 |
| abstract_inverted_index.conversion, | 59 |
| abstract_inverted_index.feasibility | 109 |
| abstract_inverted_index.implemented | 46, 117 |
| abstract_inverted_index.multi-layer | 112 |
| abstract_inverted_index.performance | 86 |
| abstract_inverted_index.preliminary | 123 |
| abstract_inverted_index.statistics. | 27 |
| abstract_inverted_index.experiments, | 5 |
| abstract_inverted_index.investigated | 100 |
| abstract_inverted_index.classification. | 94 |
| abstract_inverted_index.classifications. | 106 |
| abstract_inverted_index.gradient-boosted | 78 |
| abstract_inverted_index.sub-microseconds | 40 |
| abstract_inverted_index.world’s | 62 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5002773688 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 7 |
| corresponding_institution_ids | https://openalex.org/I56590836 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.4699999988079071 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile.value | 0.49075583 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |