Online shopping behavior prediction using support vector machines Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1063/5.0195016
In the recent years, developments with technology and the internet have expanded rapidly. A good majority of business is now done online, and online shopping has become widely used. With the number of people that make use of online shopping, the websites and applications that run these are now able to gather a large amount of data in relation to how consumers behave on their platform. This data can be analyzed to develop a machine learning model that will be capable of predicting consumer behavior in real-time and allow the platform to act accordingly. In this study, a supervised machine learning model, particularly a support vector machine, is developed using an online shopping behavior dataset. Forward sequential feature selection is used with cross-validation in order to determine the most important predictors in the dataset and Bayes' optimization is used with the SVM in order to determine the best set of hyperparameters for the model. With holdout validation, the final accuracy on the test set was found to be 89%.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1063/5.0195016
- https://pubs.aip.org/aip/acp/article-pdf/doi/10.1063/5.0195016/19581196/030055_1_5.0195016.pdf
- OA Status
- bronze
- References
- 10
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4391639183
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4391639183Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1063/5.0195016Digital Object Identifier
- Title
-
Online shopping behavior prediction using support vector machinesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-01Full publication date if available
- Authors
-
Matthew Roque, Reggie C. Gustilo, Anna Sheila I. Crisostomo, Badar Al DhuhliList of authors in order
- Landing page
-
https://doi.org/10.1063/5.0195016Publisher landing page
- PDF URL
-
https://pubs.aip.org/aip/acp/article-pdf/doi/10.1063/5.0195016/19581196/030055_1_5.0195016.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
bronzeOpen access status per OpenAlex
- OA URL
-
https://pubs.aip.org/aip/acp/article-pdf/doi/10.1063/5.0195016/19581196/030055_1_5.0195016.pdfDirect OA link when available
- Concepts
-
Support vector machine, Computer science, Artificial intelligence, Machine learningTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
10Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4391639183 |
|---|---|
| doi | https://doi.org/10.1063/5.0195016 |
| ids.doi | https://doi.org/10.1063/5.0195016 |
| ids.openalex | https://openalex.org/W4391639183 |
| fwci | 0.0 |
| type | article |
| title | Online shopping behavior prediction using support vector machines |
| biblio.issue | |
| biblio.volume | 3050 |
| biblio.last_page | 030055 |
| biblio.first_page | 030055 |
| topics[0].id | https://openalex.org/T11536 |
| topics[0].field.id | https://openalex.org/fields/14 |
| topics[0].field.display_name | Business, Management and Accounting |
| topics[0].score | 0.9916999936103821 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1406 |
| topics[0].subfield.display_name | Marketing |
| topics[0].display_name | Consumer Retail Behavior Studies |
| topics[1].id | https://openalex.org/T11980 |
| topics[1].field.id | https://openalex.org/fields/33 |
| topics[1].field.display_name | Social Sciences |
| topics[1].score | 0.9850999712944031 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3313 |
| topics[1].subfield.display_name | Transportation |
| topics[1].display_name | Human Mobility and Location-Based Analysis |
| topics[2].id | https://openalex.org/T11161 |
| topics[2].field.id | https://openalex.org/fields/14 |
| topics[2].field.display_name | Business, Management and Accounting |
| topics[2].score | 0.975600004196167 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1406 |
| topics[2].subfield.display_name | Marketing |
| topics[2].display_name | Consumer Market Behavior and Pricing |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C12267149 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7944781184196472 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[0].display_name | Support vector machine |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6897690296173096 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.3964079022407532 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C119857082 |
| concepts[3].level | 1 |
| concepts[3].score | 0.36202311515808105 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[3].display_name | Machine learning |
| keywords[0].id | https://openalex.org/keywords/support-vector-machine |
| keywords[0].score | 0.7944781184196472 |
| keywords[0].display_name | Support vector machine |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6897690296173096 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.3964079022407532 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/machine-learning |
| keywords[3].score | 0.36202311515808105 |
| keywords[3].display_name | Machine learning |
| language | en |
| locations[0].id | doi:10.1063/5.0195016 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2764696622 |
| locations[0].source.issn | 0094-243X, 1551-7616, 1935-0465 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0094-243X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | AIP conference proceedings |
| locations[0].source.host_organization | https://openalex.org/P4310320257 |
| locations[0].source.host_organization_name | American Institute of Physics |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320257 |
| locations[0].source.host_organization_lineage_names | American Institute of Physics |
| locations[0].license | |
| locations[0].pdf_url | https://pubs.aip.org/aip/acp/article-pdf/doi/10.1063/5.0195016/19581196/030055_1_5.0195016.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | AIP Conference Proceedings |
| locations[0].landing_page_url | https://doi.org/10.1063/5.0195016 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5016127546 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Matthew Roque |
| authorships[0].countries | PH |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I5996616 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Electronics and Computer Engineering, GCOE, De La Salle University, Manila City, Philippines |
| authorships[0].institutions[0].id | https://openalex.org/I5996616 |
| authorships[0].institutions[0].ror | https://ror.org/04xftk194 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I5996616 |
| authorships[0].institutions[0].country_code | PH |
| authorships[0].institutions[0].display_name | De La Salle University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Matthew Theodore C. Roque |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Electronics and Computer Engineering, GCOE, De La Salle University, Manila City, Philippines |
| authorships[1].author.id | https://openalex.org/A5054894195 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Reggie C. Gustilo |
| authorships[1].countries | PH |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I5996616 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Electronics and Computer Engineering, GCOE, De La Salle University, Manila City, Philippines |
| authorships[1].institutions[0].id | https://openalex.org/I5996616 |
| authorships[1].institutions[0].ror | https://ror.org/04xftk194 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I5996616 |
| authorships[1].institutions[0].country_code | PH |
| authorships[1].institutions[0].display_name | De La Salle University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Reggie C. Gustilo |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Electronics and Computer Engineering, GCOE, De La Salle University, Manila City, Philippines |
| authorships[2].author.id | https://openalex.org/A5087820774 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Anna Sheila I. Crisostomo |
| authorships[2].countries | OM |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210114766 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Tourism and Management, Oman Tourism College, Muscat, Oman |
| authorships[2].institutions[0].id | https://openalex.org/I4210114766 |
| authorships[2].institutions[0].ror | https://ror.org/01zhpv322 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210114766 |
| authorships[2].institutions[0].country_code | OM |
| authorships[2].institutions[0].display_name | Muscat College |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Anna Sheila I. Crisostomo |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Tourism and Management, Oman Tourism College, Muscat, Oman |
| authorships[3].author.id | https://openalex.org/A5093888287 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Badar Al Dhuhli |
| authorships[3].countries | OM |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210114766 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Tourism and Management, Oman Tourism College, Muscat, Oman |
| authorships[3].institutions[0].id | https://openalex.org/I4210114766 |
| authorships[3].institutions[0].ror | https://ror.org/01zhpv322 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210114766 |
| authorships[3].institutions[0].country_code | OM |
| authorships[3].institutions[0].display_name | Muscat College |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Badar Al Dhuhli |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Tourism and Management, Oman Tourism College, Muscat, Oman |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://pubs.aip.org/aip/acp/article-pdf/doi/10.1063/5.0195016/19581196/030055_1_5.0195016.pdf |
| open_access.oa_status | bronze |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Online shopping behavior prediction using support vector machines |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11536 |
| primary_topic.field.id | https://openalex.org/fields/14 |
| primary_topic.field.display_name | Business, Management and Accounting |
| primary_topic.score | 0.9916999936103821 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1406 |
| primary_topic.subfield.display_name | Marketing |
| primary_topic.display_name | Consumer Retail Behavior Studies |
| related_works | https://openalex.org/W2961085424, https://openalex.org/W4306674287, https://openalex.org/W4387369504, https://openalex.org/W3046775127, https://openalex.org/W4394896187, https://openalex.org/W3170094116, https://openalex.org/W4386462264, https://openalex.org/W3107602296, https://openalex.org/W4364306694, https://openalex.org/W4312192474 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1063/5.0195016 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764696622 |
| best_oa_location.source.issn | 0094-243X, 1551-7616, 1935-0465 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0094-243X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | AIP conference proceedings |
| best_oa_location.source.host_organization | https://openalex.org/P4310320257 |
| best_oa_location.source.host_organization_name | American Institute of Physics |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320257 |
| best_oa_location.source.host_organization_lineage_names | American Institute of Physics |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://pubs.aip.org/aip/acp/article-pdf/doi/10.1063/5.0195016/19581196/030055_1_5.0195016.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | AIP Conference Proceedings |
| best_oa_location.landing_page_url | https://doi.org/10.1063/5.0195016 |
| primary_location.id | doi:10.1063/5.0195016 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2764696622 |
| primary_location.source.issn | 0094-243X, 1551-7616, 1935-0465 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0094-243X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | AIP conference proceedings |
| primary_location.source.host_organization | https://openalex.org/P4310320257 |
| primary_location.source.host_organization_name | American Institute of Physics |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320257 |
| primary_location.source.host_organization_lineage_names | American Institute of Physics |
| primary_location.license | |
| primary_location.pdf_url | https://pubs.aip.org/aip/acp/article-pdf/doi/10.1063/5.0195016/19581196/030055_1_5.0195016.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | AIP Conference Proceedings |
| primary_location.landing_page_url | https://doi.org/10.1063/5.0195016 |
| publication_date | 2024-01-01 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2896205729, https://openalex.org/W3089524736, https://openalex.org/W2787750640, https://openalex.org/W3041979334, https://openalex.org/W3171145056, https://openalex.org/W3041230507, https://openalex.org/W3041989834, https://openalex.org/W3032829269, https://openalex.org/W3096769599, https://openalex.org/W2801922753 |
| referenced_works_count | 10 |
| abstract_inverted_index.A | 13 |
| abstract_inverted_index.a | 52, 73, 97, 103 |
| abstract_inverted_index.In | 0, 94 |
| abstract_inverted_index.an | 110 |
| abstract_inverted_index.be | 69, 79, 167 |
| abstract_inverted_index.in | 57, 85, 123, 131, 142 |
| abstract_inverted_index.is | 18, 107, 119, 137 |
| abstract_inverted_index.of | 16, 32, 37, 55, 81, 149 |
| abstract_inverted_index.on | 63, 160 |
| abstract_inverted_index.to | 50, 59, 71, 91, 125, 144, 166 |
| abstract_inverted_index.SVM | 141 |
| abstract_inverted_index.act | 92 |
| abstract_inverted_index.and | 7, 22, 42, 87, 134 |
| abstract_inverted_index.are | 47 |
| abstract_inverted_index.can | 68 |
| abstract_inverted_index.for | 151 |
| abstract_inverted_index.has | 25 |
| abstract_inverted_index.how | 60 |
| abstract_inverted_index.now | 19, 48 |
| abstract_inverted_index.run | 45 |
| abstract_inverted_index.set | 148, 163 |
| abstract_inverted_index.the | 1, 8, 30, 40, 89, 127, 132, 140, 146, 152, 157, 161 |
| abstract_inverted_index.use | 36 |
| abstract_inverted_index.was | 164 |
| abstract_inverted_index.89%. | 168 |
| abstract_inverted_index.This | 66 |
| abstract_inverted_index.With | 29, 154 |
| abstract_inverted_index.able | 49 |
| abstract_inverted_index.best | 147 |
| abstract_inverted_index.data | 56, 67 |
| abstract_inverted_index.done | 20 |
| abstract_inverted_index.good | 14 |
| abstract_inverted_index.have | 10 |
| abstract_inverted_index.make | 35 |
| abstract_inverted_index.most | 128 |
| abstract_inverted_index.test | 162 |
| abstract_inverted_index.that | 34, 44, 77 |
| abstract_inverted_index.this | 95 |
| abstract_inverted_index.used | 120, 138 |
| abstract_inverted_index.will | 78 |
| abstract_inverted_index.with | 5, 121, 139 |
| abstract_inverted_index.allow | 88 |
| abstract_inverted_index.final | 158 |
| abstract_inverted_index.found | 165 |
| abstract_inverted_index.large | 53 |
| abstract_inverted_index.model | 76 |
| abstract_inverted_index.order | 124, 143 |
| abstract_inverted_index.their | 64 |
| abstract_inverted_index.these | 46 |
| abstract_inverted_index.used. | 28 |
| abstract_inverted_index.using | 109 |
| abstract_inverted_index.Bayes' | 135 |
| abstract_inverted_index.amount | 54 |
| abstract_inverted_index.become | 26 |
| abstract_inverted_index.behave | 62 |
| abstract_inverted_index.gather | 51 |
| abstract_inverted_index.model, | 101 |
| abstract_inverted_index.model. | 153 |
| abstract_inverted_index.number | 31 |
| abstract_inverted_index.online | 23, 38, 111 |
| abstract_inverted_index.people | 33 |
| abstract_inverted_index.recent | 2 |
| abstract_inverted_index.study, | 96 |
| abstract_inverted_index.vector | 105 |
| abstract_inverted_index.widely | 27 |
| abstract_inverted_index.years, | 3 |
| abstract_inverted_index.Forward | 115 |
| abstract_inverted_index.capable | 80 |
| abstract_inverted_index.dataset | 133 |
| abstract_inverted_index.develop | 72 |
| abstract_inverted_index.feature | 117 |
| abstract_inverted_index.holdout | 155 |
| abstract_inverted_index.machine | 74, 99 |
| abstract_inverted_index.online, | 21 |
| abstract_inverted_index.support | 104 |
| abstract_inverted_index.accuracy | 159 |
| abstract_inverted_index.analyzed | 70 |
| abstract_inverted_index.behavior | 84, 113 |
| abstract_inverted_index.business | 17 |
| abstract_inverted_index.consumer | 83 |
| abstract_inverted_index.dataset. | 114 |
| abstract_inverted_index.expanded | 11 |
| abstract_inverted_index.internet | 9 |
| abstract_inverted_index.learning | 75, 100 |
| abstract_inverted_index.machine, | 106 |
| abstract_inverted_index.majority | 15 |
| abstract_inverted_index.platform | 90 |
| abstract_inverted_index.rapidly. | 12 |
| abstract_inverted_index.relation | 58 |
| abstract_inverted_index.shopping | 24, 112 |
| abstract_inverted_index.websites | 41 |
| abstract_inverted_index.consumers | 61 |
| abstract_inverted_index.determine | 126, 145 |
| abstract_inverted_index.developed | 108 |
| abstract_inverted_index.important | 129 |
| abstract_inverted_index.platform. | 65 |
| abstract_inverted_index.real-time | 86 |
| abstract_inverted_index.selection | 118 |
| abstract_inverted_index.shopping, | 39 |
| abstract_inverted_index.predicting | 82 |
| abstract_inverted_index.predictors | 130 |
| abstract_inverted_index.sequential | 116 |
| abstract_inverted_index.supervised | 98 |
| abstract_inverted_index.technology | 6 |
| abstract_inverted_index.validation, | 156 |
| abstract_inverted_index.accordingly. | 93 |
| abstract_inverted_index.applications | 43 |
| abstract_inverted_index.developments | 4 |
| abstract_inverted_index.optimization | 136 |
| abstract_inverted_index.particularly | 102 |
| abstract_inverted_index.hyperparameters | 150 |
| abstract_inverted_index.cross-validation | 122 |
| cited_by_percentile_year | |
| countries_distinct_count | 2 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/8 |
| sustainable_development_goals[0].score | 0.41999998688697815 |
| sustainable_development_goals[0].display_name | Decent work and economic growth |
| citation_normalized_percentile.value | 0.02133522 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |