Online social well-being dataset Article Swipe
Bagus Takwin
,
Disa Nisrina Listiani
,
Tery Setiawan
·
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.6084/m9.figshare.20769331
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.6084/m9.figshare.20769331
There are two datasets related to our study on the relation between self-disclosure and online social well-being. Two separate files are provided; demographic variables and scale variables.
Related Topics
Metadata
- Type
- dataset
- Language
- en
- Landing Page
- https://doi.org/10.6084/m9.figshare.20769331
- OA Status
- gold
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4394293667
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4394293667Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.6084/m9.figshare.20769331Digital Object Identifier
- Title
-
Online social well-being datasetWork title
- Type
-
datasetOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-01-01Full publication date if available
- Authors
-
Bagus Takwin, Disa Nisrina Listiani, Tery SetiawanList of authors in order
- Landing page
-
https://doi.org/10.6084/m9.figshare.20769331Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.6084/m9.figshare.20769331Direct OA link when available
- Concepts
-
Computer science, Data science, World Wide Web, Information retrievalTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4394293667 |
|---|---|
| doi | https://doi.org/10.6084/m9.figshare.20769331 |
| ids.doi | https://doi.org/10.6084/m9.figshare.20769331 |
| ids.openalex | https://openalex.org/W4394293667 |
| fwci | |
| type | dataset |
| title | Online social well-being dataset |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10168 |
| topics[0].field.id | https://openalex.org/fields/32 |
| topics[0].field.display_name | Psychology |
| topics[0].score | 0.9247000217437744 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3203 |
| topics[0].subfield.display_name | Clinical Psychology |
| topics[0].display_name | COVID-19 and Mental Health |
| topics[1].id | https://openalex.org/T13283 |
| topics[1].field.id | https://openalex.org/fields/32 |
| topics[1].field.display_name | Psychology |
| topics[1].score | 0.913100004196167 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3205 |
| topics[1].subfield.display_name | Experimental and Cognitive Psychology |
| topics[1].display_name | Mental Health Research Topics |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.5114185214042664 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2522767166 |
| concepts[1].level | 1 |
| concepts[1].score | 0.4232582747936249 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[1].display_name | Data science |
| concepts[2].id | https://openalex.org/C136764020 |
| concepts[2].level | 1 |
| concepts[2].score | 0.361074298620224 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q466 |
| concepts[2].display_name | World Wide Web |
| concepts[3].id | https://openalex.org/C23123220 |
| concepts[3].level | 1 |
| concepts[3].score | 0.3399438261985779 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q816826 |
| concepts[3].display_name | Information retrieval |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.5114185214042664 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/data-science |
| keywords[1].score | 0.4232582747936249 |
| keywords[1].display_name | Data science |
| keywords[2].id | https://openalex.org/keywords/world-wide-web |
| keywords[2].score | 0.361074298620224 |
| keywords[2].display_name | World Wide Web |
| keywords[3].id | https://openalex.org/keywords/information-retrieval |
| keywords[3].score | 0.3399438261985779 |
| keywords[3].display_name | Information retrieval |
| language | en |
| locations[0].id | doi:10.6084/m9.figshare.20769331 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | |
| locations[0].raw_type | dataset |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.6084/m9.figshare.20769331 |
| indexed_in | datacite |
| authorships[0].author.id | https://openalex.org/A5007588909 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9802-8869 |
| authorships[0].author.display_name | Bagus Takwin |
| authorships[0].countries | ID |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I29617571 |
| authorships[0].affiliations[0].raw_affiliation_string | University of Indonesia |
| authorships[0].institutions[0].id | https://openalex.org/I29617571 |
| authorships[0].institutions[0].ror | https://ror.org/0116zj450 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I29617571 |
| authorships[0].institutions[0].country_code | ID |
| authorships[0].institutions[0].display_name | University of Indonesia |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Bagus Takwin |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | University of Indonesia |
| authorships[1].author.id | https://openalex.org/A5022670494 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Disa Nisrina Listiani |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Disa Nisrina Listiani |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5006973939 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-1813-9097 |
| authorships[2].author.display_name | Tery Setiawan |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Tery Setiawan |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.6084/m9.figshare.20769331 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Online social well-being dataset |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10168 |
| primary_topic.field.id | https://openalex.org/fields/32 |
| primary_topic.field.display_name | Psychology |
| primary_topic.score | 0.9247000217437744 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3203 |
| primary_topic.subfield.display_name | Clinical Psychology |
| primary_topic.display_name | COVID-19 and Mental Health |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W2358668433, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W2382290278, https://openalex.org/W2478288626, https://openalex.org/W4391913857, https://openalex.org/W2350741829 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.6084/m9.figshare.20769331 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | |
| best_oa_location.raw_type | dataset |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.6084/m9.figshare.20769331 |
| primary_location.id | doi:10.6084/m9.figshare.20769331 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | |
| primary_location.raw_type | dataset |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.6084/m9.figshare.20769331 |
| publication_date | 2022-01-01 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.on | 8 |
| abstract_inverted_index.to | 5 |
| abstract_inverted_index.Two | 17 |
| abstract_inverted_index.and | 13, 24 |
| abstract_inverted_index.are | 1, 20 |
| abstract_inverted_index.our | 6 |
| abstract_inverted_index.the | 9 |
| abstract_inverted_index.two | 2 |
| abstract_inverted_index.There | 0 |
| abstract_inverted_index.files | 19 |
| abstract_inverted_index.scale | 25 |
| abstract_inverted_index.study | 7 |
| abstract_inverted_index.online | 14 |
| abstract_inverted_index.social | 15 |
| abstract_inverted_index.between | 11 |
| abstract_inverted_index.related | 4 |
| abstract_inverted_index.datasets | 3 |
| abstract_inverted_index.relation | 10 |
| abstract_inverted_index.separate | 18 |
| abstract_inverted_index.provided; | 21 |
| abstract_inverted_index.variables | 23 |
| abstract_inverted_index.variables. | 26 |
| abstract_inverted_index.demographic | 22 |
| abstract_inverted_index.well-being. | 16 |
| abstract_inverted_index.self-disclosure | 12 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |