Online Submodular Maximization with Free Disposal: Randomization Beats ¼ for Partition Matroids Article Swipe
YOU?
·
· 2017
· Open Access
·
· DOI: https://doi.org/10.1137/1.9781611974782.78
We study the online submodular maximization problem with free disposal under a matroid constraint. Elements from some ground set arrive one by one in rounds, and the algorithm maintains a feasible set that is independent in the underlying matroid. In each round when a new element arrives, the algorithm may accept the new element into its feasible set and possibly remove elements from it, provided that the resulting set is still independent. The goal is to maximize the value of the final feasible set under some monotone submodular function, to which the algorithm has oracle access. \n \nFor k-uniform matroids, we give a deterministic algorithm with competitive ratio at least 0.2959, and the ratio approaches 1/α∞ ≈ 0.3178 as k approaches infinity, improving the previous best ratio of 0.25 by Chakrabarti and Kale (IPCO 2014), Buchbinder et al. (SODA 2015) and Chekuri et al. (ICALP 2015). We also show that our algorithm is optimal among a class of deterministic monotone algorithms that accept a new arriving element only if the objective is strictly increased. \n \nFurther, we prove that no deterministic monotone algorithm can be strictly better than 0.25-competitive even for partition matroids, the most modest generalization of k-uniform matroids, matching the competitive ratio by Chakrabarti and Kale (IPCO 2014) and Chekuri et al. (ICALP 2015). Interestingly, we show that randomized algorithms are strictly more powerful by giving a (non-monotone) randomized algorithm for partition matroids with ratio 1/α∞ ≈ 0.3178. \n \nFinally, our techniques can be extended to a more general problem that generalizes both the online sub-modular maximization problem and the online bipartite matching problem with free disposal. Using the techniques developed in this paper, we give constant-competitive algorithms for the submodular online bipartite matching problem.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1137/1.9781611974782.78
- https://epubs.siam.org/doi/pdf/10.1137/1.9781611974782.78
- OA Status
- gold
- Cited By
- 9
- References
- 21
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2952790532
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2952790532Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1137/1.9781611974782.78Digital Object Identifier
- Title
-
Online Submodular Maximization with Free Disposal: Randomization Beats ¼ for Partition MatroidsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2017Year of publication
- Publication date
-
2017-01-01Full publication date if available
- Authors
-
T-H. Hubert Chan, Zhiyi Huang, Shaofeng H.-C. Jiang, Ning Kang, Zhihao Gavin TangList of authors in order
- Landing page
-
https://doi.org/10.1137/1.9781611974782.78Publisher landing page
- PDF URL
-
https://epubs.siam.org/doi/pdf/10.1137/1.9781611974782.78Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://epubs.siam.org/doi/pdf/10.1137/1.9781611974782.78Direct OA link when available
- Concepts
-
Matroid, Submodular set function, Competitive analysis, Mathematics, Combinatorics, Monotone polygon, Set function, Partition (number theory), Randomized algorithm, Oracle, Discrete mathematics, Maximization, Generalization, Matching (statistics), Matroid partitioning, Approximation algorithm, Online algorithm, Set (abstract data type), Graphic matroid, Mathematical optimization, Computer science, Upper and lower bounds, Geometry, Programming language, Mathematical analysis, Software engineering, StatisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
9Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2023: 2, 2021: 2, 2020: 1, 2019: 3Per-year citation counts (last 5 years)
- References (count)
-
21Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2952790532 |
|---|---|
| doi | https://doi.org/10.1137/1.9781611974782.78 |
| ids.doi | https://doi.org/10.1137/1.9781611974782.78 |
| ids.mag | 2952790532 |
| ids.openalex | https://openalex.org/W2952790532 |
| fwci | 1.1837067 |
| type | preprint |
| title | Online Submodular Maximization with Free Disposal: Randomization Beats ¼ for Partition Matroids |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 1223 |
| biblio.first_page | 1204 |
| topics[0].id | https://openalex.org/T10720 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9995999932289124 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1703 |
| topics[0].subfield.display_name | Computational Theory and Mathematics |
| topics[0].display_name | Complexity and Algorithms in Graphs |
| topics[1].id | https://openalex.org/T12288 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9995999932289124 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1705 |
| topics[1].subfield.display_name | Computer Networks and Communications |
| topics[1].display_name | Optimization and Search Problems |
| topics[2].id | https://openalex.org/T10237 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9983000159263611 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Cryptography and Data Security |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C106286213 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9348729848861694 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q898572 |
| concepts[0].display_name | Matroid |
| concepts[1].id | https://openalex.org/C178621042 |
| concepts[1].level | 2 |
| concepts[1].score | 0.9211804270744324 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q7631710 |
| concepts[1].display_name | Submodular set function |
| concepts[2].id | https://openalex.org/C102408133 |
| concepts[2].level | 3 |
| concepts[2].score | 0.8066805601119995 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q5156350 |
| concepts[2].display_name | Competitive analysis |
| concepts[3].id | https://openalex.org/C33923547 |
| concepts[3].level | 0 |
| concepts[3].score | 0.6666849851608276 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[3].display_name | Mathematics |
| concepts[4].id | https://openalex.org/C114614502 |
| concepts[4].level | 1 |
| concepts[4].score | 0.647364616394043 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[4].display_name | Combinatorics |
| concepts[5].id | https://openalex.org/C2834757 |
| concepts[5].level | 2 |
| concepts[5].score | 0.617053210735321 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q4925424 |
| concepts[5].display_name | Monotone polygon |
| concepts[6].id | https://openalex.org/C15312841 |
| concepts[6].level | 3 |
| concepts[6].score | 0.5806295871734619 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1657198 |
| concepts[6].display_name | Set function |
| concepts[7].id | https://openalex.org/C42812 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5782386064529419 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1082910 |
| concepts[7].display_name | Partition (number theory) |
| concepts[8].id | https://openalex.org/C128669082 |
| concepts[8].level | 2 |
| concepts[8].score | 0.559709370136261 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q583461 |
| concepts[8].display_name | Randomized algorithm |
| concepts[9].id | https://openalex.org/C55166926 |
| concepts[9].level | 2 |
| concepts[9].score | 0.5529937744140625 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2892946 |
| concepts[9].display_name | Oracle |
| concepts[10].id | https://openalex.org/C118615104 |
| concepts[10].level | 1 |
| concepts[10].score | 0.5308324694633484 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q121416 |
| concepts[10].display_name | Discrete mathematics |
| concepts[11].id | https://openalex.org/C2776330181 |
| concepts[11].level | 2 |
| concepts[11].score | 0.5276480913162231 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q18358244 |
| concepts[11].display_name | Maximization |
| concepts[12].id | https://openalex.org/C177148314 |
| concepts[12].level | 2 |
| concepts[12].score | 0.452066034078598 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q170084 |
| concepts[12].display_name | Generalization |
| concepts[13].id | https://openalex.org/C165064840 |
| concepts[13].level | 2 |
| concepts[13].score | 0.4496607184410095 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1321061 |
| concepts[13].display_name | Matching (statistics) |
| concepts[14].id | https://openalex.org/C22425182 |
| concepts[14].level | 4 |
| concepts[14].score | 0.41725295782089233 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q6787906 |
| concepts[14].display_name | Matroid partitioning |
| concepts[15].id | https://openalex.org/C148764684 |
| concepts[15].level | 2 |
| concepts[15].score | 0.4122583866119385 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q621751 |
| concepts[15].display_name | Approximation algorithm |
| concepts[16].id | https://openalex.org/C196921405 |
| concepts[16].level | 2 |
| concepts[16].score | 0.4120582938194275 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q786431 |
| concepts[16].display_name | Online algorithm |
| concepts[17].id | https://openalex.org/C177264268 |
| concepts[17].level | 2 |
| concepts[17].score | 0.40464484691619873 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[17].display_name | Set (abstract data type) |
| concepts[18].id | https://openalex.org/C111034964 |
| concepts[18].level | 3 |
| concepts[18].score | 0.34610801935195923 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q5597156 |
| concepts[18].display_name | Graphic matroid |
| concepts[19].id | https://openalex.org/C126255220 |
| concepts[19].level | 1 |
| concepts[19].score | 0.32324618101119995 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[19].display_name | Mathematical optimization |
| concepts[20].id | https://openalex.org/C41008148 |
| concepts[20].level | 0 |
| concepts[20].score | 0.26693689823150635 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[20].display_name | Computer science |
| concepts[21].id | https://openalex.org/C77553402 |
| concepts[21].level | 2 |
| concepts[21].score | 0.1639673113822937 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q13222579 |
| concepts[21].display_name | Upper and lower bounds |
| concepts[22].id | https://openalex.org/C2524010 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[22].display_name | Geometry |
| concepts[23].id | https://openalex.org/C199360897 |
| concepts[23].level | 1 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[23].display_name | Programming language |
| concepts[24].id | https://openalex.org/C134306372 |
| concepts[24].level | 1 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[24].display_name | Mathematical analysis |
| concepts[25].id | https://openalex.org/C115903868 |
| concepts[25].level | 1 |
| concepts[25].score | 0.0 |
| concepts[25].wikidata | https://www.wikidata.org/wiki/Q80993 |
| concepts[25].display_name | Software engineering |
| concepts[26].id | https://openalex.org/C105795698 |
| concepts[26].level | 1 |
| concepts[26].score | 0.0 |
| concepts[26].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[26].display_name | Statistics |
| keywords[0].id | https://openalex.org/keywords/matroid |
| keywords[0].score | 0.9348729848861694 |
| keywords[0].display_name | Matroid |
| keywords[1].id | https://openalex.org/keywords/submodular-set-function |
| keywords[1].score | 0.9211804270744324 |
| keywords[1].display_name | Submodular set function |
| keywords[2].id | https://openalex.org/keywords/competitive-analysis |
| keywords[2].score | 0.8066805601119995 |
| keywords[2].display_name | Competitive analysis |
| keywords[3].id | https://openalex.org/keywords/mathematics |
| keywords[3].score | 0.6666849851608276 |
| keywords[3].display_name | Mathematics |
| keywords[4].id | https://openalex.org/keywords/combinatorics |
| keywords[4].score | 0.647364616394043 |
| keywords[4].display_name | Combinatorics |
| keywords[5].id | https://openalex.org/keywords/monotone-polygon |
| keywords[5].score | 0.617053210735321 |
| keywords[5].display_name | Monotone polygon |
| keywords[6].id | https://openalex.org/keywords/set-function |
| keywords[6].score | 0.5806295871734619 |
| keywords[6].display_name | Set function |
| keywords[7].id | https://openalex.org/keywords/partition |
| keywords[7].score | 0.5782386064529419 |
| keywords[7].display_name | Partition (number theory) |
| keywords[8].id | https://openalex.org/keywords/randomized-algorithm |
| keywords[8].score | 0.559709370136261 |
| keywords[8].display_name | Randomized algorithm |
| keywords[9].id | https://openalex.org/keywords/oracle |
| keywords[9].score | 0.5529937744140625 |
| keywords[9].display_name | Oracle |
| keywords[10].id | https://openalex.org/keywords/discrete-mathematics |
| keywords[10].score | 0.5308324694633484 |
| keywords[10].display_name | Discrete mathematics |
| keywords[11].id | https://openalex.org/keywords/maximization |
| keywords[11].score | 0.5276480913162231 |
| keywords[11].display_name | Maximization |
| keywords[12].id | https://openalex.org/keywords/generalization |
| keywords[12].score | 0.452066034078598 |
| keywords[12].display_name | Generalization |
| keywords[13].id | https://openalex.org/keywords/matching |
| keywords[13].score | 0.4496607184410095 |
| keywords[13].display_name | Matching (statistics) |
| keywords[14].id | https://openalex.org/keywords/matroid-partitioning |
| keywords[14].score | 0.41725295782089233 |
| keywords[14].display_name | Matroid partitioning |
| keywords[15].id | https://openalex.org/keywords/approximation-algorithm |
| keywords[15].score | 0.4122583866119385 |
| keywords[15].display_name | Approximation algorithm |
| keywords[16].id | https://openalex.org/keywords/online-algorithm |
| keywords[16].score | 0.4120582938194275 |
| keywords[16].display_name | Online algorithm |
| keywords[17].id | https://openalex.org/keywords/set |
| keywords[17].score | 0.40464484691619873 |
| keywords[17].display_name | Set (abstract data type) |
| keywords[18].id | https://openalex.org/keywords/graphic-matroid |
| keywords[18].score | 0.34610801935195923 |
| keywords[18].display_name | Graphic matroid |
| keywords[19].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[19].score | 0.32324618101119995 |
| keywords[19].display_name | Mathematical optimization |
| keywords[20].id | https://openalex.org/keywords/computer-science |
| keywords[20].score | 0.26693689823150635 |
| keywords[20].display_name | Computer science |
| keywords[21].id | https://openalex.org/keywords/upper-and-lower-bounds |
| keywords[21].score | 0.1639673113822937 |
| keywords[21].display_name | Upper and lower bounds |
| language | en |
| locations[0].id | doi:10.1137/1.9781611974782.78 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | https://epubs.siam.org/doi/pdf/10.1137/1.9781611974782.78 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms |
| locations[0].landing_page_url | https://doi.org/10.1137/1.9781611974782.78 |
| locations[1].id | pmh:oai:hub.hku.hk:10722/241683 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4377196271 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | The HKU Scholars Hub (University of Hong Kong) |
| locations[1].source.host_organization | https://openalex.org/I889458895 |
| locations[1].source.host_organization_name | University of Hong Kong |
| locations[1].source.host_organization_lineage | https://openalex.org/I889458895 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | Conference_Paper |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://hdl.handle.net/10722/241683 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5018708584 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8340-235X |
| authorships[0].author.display_name | T-H. Hubert Chan |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | T-H. Hubert Chan |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5044562275 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2963-9556 |
| authorships[1].author.display_name | Zhiyi Huang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zhiyi Huang |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5063670809 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7972-827X |
| authorships[2].author.display_name | Shaofeng H.-C. Jiang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Shaofeng H.-C Jiang |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100642732 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-1566-3184 |
| authorships[3].author.display_name | Ning Kang |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Ning Kang |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5032128738 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-5094-1971 |
| authorships[4].author.display_name | Zhihao Gavin Tang |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Zhihao Gavin Tang |
| authorships[4].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://epubs.siam.org/doi/pdf/10.1137/1.9781611974782.78 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2019-06-27T00:00:00 |
| display_name | Online Submodular Maximization with Free Disposal: Randomization Beats ¼ for Partition Matroids |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10720 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9995999932289124 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1703 |
| primary_topic.subfield.display_name | Computational Theory and Mathematics |
| primary_topic.display_name | Complexity and Algorithms in Graphs |
| related_works | https://openalex.org/W2058489697, https://openalex.org/W2980228156, https://openalex.org/W2378157773, https://openalex.org/W4303709689, https://openalex.org/W1978795414, https://openalex.org/W2153065381, https://openalex.org/W4367050287, https://openalex.org/W2106412416, https://openalex.org/W2072414647, https://openalex.org/W2400862597 |
| cited_by_count | 9 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2021 |
| counts_by_year[2].cited_by_count | 2 |
| counts_by_year[3].year | 2020 |
| counts_by_year[3].cited_by_count | 1 |
| counts_by_year[4].year | 2019 |
| counts_by_year[4].cited_by_count | 3 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1137/1.9781611974782.78 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://epubs.siam.org/doi/pdf/10.1137/1.9781611974782.78 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms |
| best_oa_location.landing_page_url | https://doi.org/10.1137/1.9781611974782.78 |
| primary_location.id | doi:10.1137/1.9781611974782.78 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | https://epubs.siam.org/doi/pdf/10.1137/1.9781611974782.78 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms |
| primary_location.landing_page_url | https://doi.org/10.1137/1.9781611974782.78 |
| publication_date | 2017-01-01 |
| publication_year | 2017 |
| referenced_works | https://openalex.org/W1966079129, https://openalex.org/W1482405521, https://openalex.org/W2132651631, https://openalex.org/W1771298372, https://openalex.org/W2048837158, https://openalex.org/W2401584318, https://openalex.org/W2143996311, https://openalex.org/W2042873949, https://openalex.org/W2104806240, https://openalex.org/W1770502437, https://openalex.org/W2179494254, https://openalex.org/W1955698431, https://openalex.org/W2054428995, https://openalex.org/W1562932642, https://openalex.org/W2480626043, https://openalex.org/W1536154726, https://openalex.org/W1722931978, https://openalex.org/W1674178071, https://openalex.org/W1816320414, https://openalex.org/W2952981324, https://openalex.org/W1578666690 |
| referenced_works_count | 21 |
| abstract_inverted_index.a | 11, 29, 43, 100, 153, 161, 224, 242 |
| abstract_inverted_index.k | 117 |
| abstract_inverted_index.In | 39 |
| abstract_inverted_index.We | 0, 144 |
| abstract_inverted_index.as | 116 |
| abstract_inverted_index.at | 106 |
| abstract_inverted_index.be | 180, 239 |
| abstract_inverted_index.by | 21, 127, 200, 222 |
| abstract_inverted_index.et | 134, 140, 208 |
| abstract_inverted_index.if | 166 |
| abstract_inverted_index.in | 23, 35, 267 |
| abstract_inverted_index.is | 33, 69, 74, 150, 169 |
| abstract_inverted_index.no | 175 |
| abstract_inverted_index.of | 79, 125, 155, 193 |
| abstract_inverted_index.to | 75, 89, 241 |
| abstract_inverted_index.we | 98, 172, 213, 270 |
| abstract_inverted_index.The | 72 |
| abstract_inverted_index.al. | 135, 141, 209 |
| abstract_inverted_index.and | 25, 58, 109, 129, 138, 202, 206, 254 |
| abstract_inverted_index.are | 218 |
| abstract_inverted_index.can | 179, 238 |
| abstract_inverted_index.for | 186, 228, 274 |
| abstract_inverted_index.has | 93 |
| abstract_inverted_index.it, | 63 |
| abstract_inverted_index.its | 55 |
| abstract_inverted_index.may | 49 |
| abstract_inverted_index.new | 44, 52, 162 |
| abstract_inverted_index.one | 20, 22 |
| abstract_inverted_index.our | 148, 236 |
| abstract_inverted_index.set | 18, 31, 57, 68, 83 |
| abstract_inverted_index.the | 2, 26, 36, 47, 51, 66, 77, 80, 91, 110, 121, 167, 189, 197, 249, 255, 264, 275 |
| abstract_inverted_index.≈ | 114, 234 |
| abstract_inverted_index.0.25 | 126 |
| abstract_inverted_index.Kale | 130, 203 |
| abstract_inverted_index.also | 145 |
| abstract_inverted_index.best | 123 |
| abstract_inverted_index.both | 248 |
| abstract_inverted_index.each | 40 |
| abstract_inverted_index.even | 185 |
| abstract_inverted_index.free | 8, 261 |
| abstract_inverted_index.from | 15, 62 |
| abstract_inverted_index.give | 99, 271 |
| abstract_inverted_index.goal | 73 |
| abstract_inverted_index.into | 54 |
| abstract_inverted_index.more | 220, 243 |
| abstract_inverted_index.most | 190 |
| abstract_inverted_index.only | 165 |
| abstract_inverted_index.show | 146, 214 |
| abstract_inverted_index.some | 16, 85 |
| abstract_inverted_index.than | 183 |
| abstract_inverted_index.that | 32, 65, 147, 159, 174, 215, 246 |
| abstract_inverted_index.this | 268 |
| abstract_inverted_index.when | 42 |
| abstract_inverted_index.with | 7, 103, 231, 260 |
| abstract_inverted_index.(IPCO | 131, 204 |
| abstract_inverted_index.(SODA | 136 |
| abstract_inverted_index.2014) | 205 |
| abstract_inverted_index.2015) | 137 |
| abstract_inverted_index.Using | 263 |
| abstract_inverted_index.among | 152 |
| abstract_inverted_index.class | 154 |
| abstract_inverted_index.final | 81 |
| abstract_inverted_index.least | 107 |
| abstract_inverted_index.prove | 173 |
| abstract_inverted_index.ratio | 105, 111, 124, 199, 232 |
| abstract_inverted_index.round | 41 |
| abstract_inverted_index.still | 70 |
| abstract_inverted_index.study | 1 |
| abstract_inverted_index.under | 10, 84 |
| abstract_inverted_index.value | 78 |
| abstract_inverted_index.which | 90 |
| abstract_inverted_index.(ICALP | 142, 210 |
| abstract_inverted_index.0.3178 | 115 |
| abstract_inverted_index.2014), | 132 |
| abstract_inverted_index.2015). | 143, 211 |
| abstract_inverted_index.accept | 50, 160 |
| abstract_inverted_index.arrive | 19 |
| abstract_inverted_index.better | 182 |
| abstract_inverted_index.giving | 223 |
| abstract_inverted_index.ground | 17 |
| abstract_inverted_index.modest | 191 |
| abstract_inverted_index.online | 3, 250, 256, 277 |
| abstract_inverted_index.oracle | 94 |
| abstract_inverted_index.paper, | 269 |
| abstract_inverted_index.remove | 60 |
| abstract_inverted_index.0.2959, | 108 |
| abstract_inverted_index.1/α∞ | 113, 233 |
| abstract_inverted_index.Chekuri | 139, 207 |
| abstract_inverted_index.element | 45, 53, 164 |
| abstract_inverted_index.general | 244 |
| abstract_inverted_index.matroid | 12 |
| abstract_inverted_index.optimal | 151 |
| abstract_inverted_index.problem | 6, 245, 253, 259 |
| abstract_inverted_index.rounds, | 24 |
| abstract_inverted_index.Elements | 14 |
| abstract_inverted_index.arrives, | 46 |
| abstract_inverted_index.arriving | 163 |
| abstract_inverted_index.disposal | 9 |
| abstract_inverted_index.elements | 61 |
| abstract_inverted_index.extended | 240 |
| abstract_inverted_index.feasible | 30, 56, 82 |
| abstract_inverted_index.matching | 196, 258, 279 |
| abstract_inverted_index.matroid. | 38 |
| abstract_inverted_index.matroids | 230 |
| abstract_inverted_index.maximize | 76 |
| abstract_inverted_index.monotone | 86, 157, 177 |
| abstract_inverted_index.possibly | 59 |
| abstract_inverted_index.powerful | 221 |
| abstract_inverted_index.previous | 122 |
| abstract_inverted_index.problem. | 280 |
| abstract_inverted_index.provided | 64 |
| abstract_inverted_index.strictly | 170, 181, 219 |
| abstract_inverted_index.algorithm | 27, 48, 92, 102, 149, 178, 227 |
| abstract_inverted_index.bipartite | 257, 278 |
| abstract_inverted_index.developed | 266 |
| abstract_inverted_index.disposal. | 262 |
| abstract_inverted_index.function, | 88 |
| abstract_inverted_index.improving | 120 |
| abstract_inverted_index.infinity, | 119 |
| abstract_inverted_index.k-uniform | 96, 194 |
| abstract_inverted_index.maintains | 28 |
| abstract_inverted_index.matroids, | 97, 188, 195 |
| abstract_inverted_index.objective | 168 |
| abstract_inverted_index.partition | 187, 229 |
| abstract_inverted_index.resulting | 67 |
| abstract_inverted_index.Buchbinder | 133 |
| abstract_inverted_index.algorithms | 158, 217, 273 |
| abstract_inverted_index.approaches | 112, 118 |
| abstract_inverted_index.randomized | 216, 226 |
| abstract_inverted_index.submodular | 4, 87, 276 |
| abstract_inverted_index.techniques | 237, 265 |
| abstract_inverted_index.underlying | 37 |
| abstract_inverted_index.Chakrabarti | 128, 201 |
| abstract_inverted_index.competitive | 104, 198 |
| abstract_inverted_index.constraint. | 13 |
| abstract_inverted_index.generalizes | 247 |
| abstract_inverted_index.independent | 34 |
| abstract_inverted_index.sub-modular | 251 |
| abstract_inverted_index.independent. | 71 |
| abstract_inverted_index.maximization | 5, 252 |
| abstract_inverted_index.deterministic | 101, 156, 176 |
| abstract_inverted_index.(non-monotone) | 225 |
| abstract_inverted_index.Interestingly, | 212 |
| abstract_inverted_index.generalization | 192 |
| abstract_inverted_index.0.25-competitive | 184 |
| abstract_inverted_index.constant-competitive | 272 |
| abstract_inverted_index.access. \n \nFor | 95 |
| abstract_inverted_index.0.3178. \n \nFinally, | 235 |
| abstract_inverted_index.increased. \n \nFurther, | 171 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.79137056 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |