Ontology-Based Natural Language Processing for Sentimental Knowledge Analysis Using Deep Learning Architectures Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1145/3624012
When tested with popular datasets, sentiment categorization using deep learning (DL) algorithms will produce positive results. Building a corpus on novel themes to train machine learning methods in sentiment classification with high assurance, however, will be difficult. This study proposes a way for representing efficient features of a dataset into a word embedding layer of DL methods in sentiment classification known as KPRO (knowledge processing and representation based on ontology), a procedure to embed knowledge in the ontology of opinion datasets. This research proposes novel methods in ontology-based natural language processing utilizing feature extraction as well as classification by a DL technique. Here, input text has been taken as web ontology based text and is processed for word embedding. Then the feature mapping is carried out for this processed text using least square mapping in which the sentiment-based text has been mapped for feature extraction. The feature extraction is carried out using a Markov model based auto-feature encoder (MarMod_AuFeaEnCod). Extracted features are classified by utilizing hierarchical convolutional attention networks. Based on this classified output, the sentiment of the text obtained from web data has been analyzed. Results are carried out for Twitter and Facebook ontology-based sentimental analysis datasets in terms of accuracy, precision, recall, F-1 score, RMSE, and loss curve analysis. For the Twitter dataset, the proposed MarMod_AuFeaEnCod_HCAN attains an accuracy of 98%, precision of 95%, recall of 93%, F-1 score of 91%, RMSE of 88%, and loss curve of 70.2%. For Facebook, ontology web dataset analysis is also carried out with the same parameters in which the proposed MarMod_AuFeaEnCod_HCAN acquires accuracy of 96%, precision of 92%, recall of 94%, F-1 score of 91%, RMSE of 77%, and loss curve of 68.2%.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1145/3624012
- https://dl.acm.org/doi/pdf/10.1145/3624012
- OA Status
- bronze
- Cited By
- 8
- References
- 15
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4388658829
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4388658829Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1145/3624012Digital Object Identifier
- Title
-
Ontology-Based Natural Language Processing for Sentimental Knowledge Analysis Using Deep Learning ArchitecturesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-11-14Full publication date if available
- Authors
-
Deepak Kumar Jain, Shamimul Qamar, Saurabh Raj Sangwan, Weiping Ding, Anand J. KulkarniList of authors in order
- Landing page
-
https://doi.org/10.1145/3624012Publisher landing page
- PDF URL
-
https://dl.acm.org/doi/pdf/10.1145/3624012Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
bronzeOpen access status per OpenAlex
- OA URL
-
https://dl.acm.org/doi/pdf/10.1145/3624012Direct OA link when available
- Concepts
-
Computer science, Artificial intelligence, Sentiment analysis, Ontology, Natural language processing, Word embedding, Feature (linguistics), Feature extraction, Categorization, Information retrieval, Embedding, Machine learning, Philosophy, Linguistics, EpistemologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
8Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 5, 2024: 3Per-year citation counts (last 5 years)
- References (count)
-
15Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4388658829 |
|---|---|
| doi | https://doi.org/10.1145/3624012 |
| ids.doi | https://doi.org/10.1145/3624012 |
| ids.openalex | https://openalex.org/W4388658829 |
| fwci | 2.0435431 |
| type | article |
| title | Ontology-Based Natural Language Processing for Sentimental Knowledge Analysis Using Deep Learning Architectures |
| biblio.issue | 1 |
| biblio.volume | 23 |
| biblio.last_page | 17 |
| biblio.first_page | 1 |
| topics[0].id | https://openalex.org/T10664 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Sentiment Analysis and Opinion Mining |
| topics[1].id | https://openalex.org/T11550 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9861000180244446 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Text and Document Classification Technologies |
| topics[2].id | https://openalex.org/T10028 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9740999937057495 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Topic Modeling |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8030866384506226 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6680623292922974 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C66402592 |
| concepts[2].level | 2 |
| concepts[2].score | 0.652562141418457 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2271421 |
| concepts[2].display_name | Sentiment analysis |
| concepts[3].id | https://openalex.org/C25810664 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6293331384658813 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q44325 |
| concepts[3].display_name | Ontology |
| concepts[4].id | https://openalex.org/C204321447 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5611565709114075 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[4].display_name | Natural language processing |
| concepts[5].id | https://openalex.org/C2777462759 |
| concepts[5].level | 3 |
| concepts[5].score | 0.5515060424804688 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q18395344 |
| concepts[5].display_name | Word embedding |
| concepts[6].id | https://openalex.org/C2776401178 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5056695938110352 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[6].display_name | Feature (linguistics) |
| concepts[7].id | https://openalex.org/C52622490 |
| concepts[7].level | 2 |
| concepts[7].score | 0.47759437561035156 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1026626 |
| concepts[7].display_name | Feature extraction |
| concepts[8].id | https://openalex.org/C94124525 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4196999967098236 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q912550 |
| concepts[8].display_name | Categorization |
| concepts[9].id | https://openalex.org/C23123220 |
| concepts[9].level | 1 |
| concepts[9].score | 0.4050697088241577 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q816826 |
| concepts[9].display_name | Information retrieval |
| concepts[10].id | https://openalex.org/C41608201 |
| concepts[10].level | 2 |
| concepts[10].score | 0.37428760528564453 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q980509 |
| concepts[10].display_name | Embedding |
| concepts[11].id | https://openalex.org/C119857082 |
| concepts[11].level | 1 |
| concepts[11].score | 0.32985639572143555 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[11].display_name | Machine learning |
| concepts[12].id | https://openalex.org/C138885662 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[12].display_name | Philosophy |
| concepts[13].id | https://openalex.org/C41895202 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[13].display_name | Linguistics |
| concepts[14].id | https://openalex.org/C111472728 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q9471 |
| concepts[14].display_name | Epistemology |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8030866384506226 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.6680623292922974 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/sentiment-analysis |
| keywords[2].score | 0.652562141418457 |
| keywords[2].display_name | Sentiment analysis |
| keywords[3].id | https://openalex.org/keywords/ontology |
| keywords[3].score | 0.6293331384658813 |
| keywords[3].display_name | Ontology |
| keywords[4].id | https://openalex.org/keywords/natural-language-processing |
| keywords[4].score | 0.5611565709114075 |
| keywords[4].display_name | Natural language processing |
| keywords[5].id | https://openalex.org/keywords/word-embedding |
| keywords[5].score | 0.5515060424804688 |
| keywords[5].display_name | Word embedding |
| keywords[6].id | https://openalex.org/keywords/feature |
| keywords[6].score | 0.5056695938110352 |
| keywords[6].display_name | Feature (linguistics) |
| keywords[7].id | https://openalex.org/keywords/feature-extraction |
| keywords[7].score | 0.47759437561035156 |
| keywords[7].display_name | Feature extraction |
| keywords[8].id | https://openalex.org/keywords/categorization |
| keywords[8].score | 0.4196999967098236 |
| keywords[8].display_name | Categorization |
| keywords[9].id | https://openalex.org/keywords/information-retrieval |
| keywords[9].score | 0.4050697088241577 |
| keywords[9].display_name | Information retrieval |
| keywords[10].id | https://openalex.org/keywords/embedding |
| keywords[10].score | 0.37428760528564453 |
| keywords[10].display_name | Embedding |
| keywords[11].id | https://openalex.org/keywords/machine-learning |
| keywords[11].score | 0.32985639572143555 |
| keywords[11].display_name | Machine learning |
| language | en |
| locations[0].id | doi:10.1145/3624012 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306421405 |
| locations[0].source.issn | 2375-4699, 2375-4702 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2375-4699 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | ACM Transactions on Asian and Low-Resource Language Information Processing |
| locations[0].source.host_organization | https://openalex.org/P4310319798 |
| locations[0].source.host_organization_name | Association for Computing Machinery |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319798 |
| locations[0].source.host_organization_lineage_names | Association for Computing Machinery |
| locations[0].license | |
| locations[0].pdf_url | https://dl.acm.org/doi/pdf/10.1145/3624012 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | ACM Transactions on Asian and Low-Resource Language Information Processing |
| locations[0].landing_page_url | https://doi.org/10.1145/3624012 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5110109385 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9848-6587 |
| authorships[0].author.display_name | Deepak Kumar Jain |
| authorships[0].countries | CN, IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I244572783, https://openalex.org/I27357992 |
| authorships[0].affiliations[0].raw_affiliation_string | Key Laboratory of Intelligent Control and Optimization for Industrial Equipment of Ministry of Education, Dalian University of Technology, Dalian, 116024, China. School of Artificial Intelligence, Dalian, China. Symbiosis Institute of Technology, Symbiosis International University, Pune, India |
| authorships[0].institutions[0].id | https://openalex.org/I27357992 |
| authorships[0].institutions[0].ror | https://ror.org/023hj5876 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I27357992 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Dalian University of Technology |
| authorships[0].institutions[1].id | https://openalex.org/I244572783 |
| authorships[0].institutions[1].ror | https://ror.org/005r2ww51 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I244572783 |
| authorships[0].institutions[1].country_code | IN |
| authorships[0].institutions[1].display_name | Symbiosis International University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Deepak Kumar Jain |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Key Laboratory of Intelligent Control and Optimization for Industrial Equipment of Ministry of Education, Dalian University of Technology, Dalian, 116024, China. School of Artificial Intelligence, Dalian, China. Symbiosis Institute of Technology, Symbiosis International University, Pune, India |
| authorships[1].author.id | https://openalex.org/A5026836499 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1091-7715 |
| authorships[1].author.display_name | Shamimul Qamar |
| authorships[1].countries | SA |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I82952536 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering, Faculty of Sciences &Managements, Dhahran Al Janub, King Khalid University, Abha, Saudi Arabia |
| authorships[1].institutions[0].id | https://openalex.org/I82952536 |
| authorships[1].institutions[0].ror | https://ror.org/052kwzs30 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I82952536 |
| authorships[1].institutions[0].country_code | SA |
| authorships[1].institutions[0].display_name | King Khalid University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Shamimul Qamar |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Computer Science and Engineering, Faculty of Sciences &Managements, Dhahran Al Janub, King Khalid University, Abha, Saudi Arabia |
| authorships[2].author.id | https://openalex.org/A5091017133 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0832-0362 |
| authorships[2].author.display_name | Saurabh Raj Sangwan |
| authorships[2].countries | IN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I36090812 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering, Netaji Subhas University of Technology, India |
| authorships[2].institutions[0].id | https://openalex.org/I36090812 |
| authorships[2].institutions[0].ror | https://ror.org/01fczmh85 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I36090812 |
| authorships[2].institutions[0].country_code | IN |
| authorships[2].institutions[0].display_name | Netaji Subhas University of Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Saurabh Raj Sangwan |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Computer Science and Engineering, Netaji Subhas University of Technology, India |
| authorships[3].author.id | https://openalex.org/A5069969191 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-3180-7347 |
| authorships[3].author.display_name | Weiping Ding |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I199305430 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Information Science and Technology, Nantong University, Nantong 226019, China |
| authorships[3].institutions[0].id | https://openalex.org/I199305430 |
| authorships[3].institutions[0].ror | https://ror.org/02afcvw97 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I199305430 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Nantong University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Weiping Ding |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Information Science and Technology, Nantong University, Nantong 226019, China |
| authorships[4].author.id | https://openalex.org/A5080691948 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-6242-9492 |
| authorships[4].author.display_name | Anand J. Kulkarni |
| authorships[4].countries | IN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210088227 |
| authorships[4].affiliations[0].raw_affiliation_string | Institute of Artificial Intelligence, MIT World Peace University, Pune, India |
| authorships[4].institutions[0].id | https://openalex.org/I4210088227 |
| authorships[4].institutions[0].ror | https://ror.org/004ymxd45 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210088227 |
| authorships[4].institutions[0].country_code | IN |
| authorships[4].institutions[0].display_name | MIT World Peace University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Anand J. Kulkarni |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Institute of Artificial Intelligence, MIT World Peace University, Pune, India |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://dl.acm.org/doi/pdf/10.1145/3624012 |
| open_access.oa_status | bronze |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Ontology-Based Natural Language Processing for Sentimental Knowledge Analysis Using Deep Learning Architectures |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10664 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Sentiment Analysis and Opinion Mining |
| related_works | https://openalex.org/W2165912799, https://openalex.org/W2735662278, https://openalex.org/W2382615723, https://openalex.org/W4405331580, https://openalex.org/W4311804456, https://openalex.org/W1987484445, https://openalex.org/W3186997021, https://openalex.org/W4200618314, https://openalex.org/W4308088897, https://openalex.org/W4286432911 |
| cited_by_count | 8 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 5 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 3 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1145/3624012 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306421405 |
| best_oa_location.source.issn | 2375-4699, 2375-4702 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 2375-4699 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | ACM Transactions on Asian and Low-Resource Language Information Processing |
| best_oa_location.source.host_organization | https://openalex.org/P4310319798 |
| best_oa_location.source.host_organization_name | Association for Computing Machinery |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319798 |
| best_oa_location.source.host_organization_lineage_names | Association for Computing Machinery |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://dl.acm.org/doi/pdf/10.1145/3624012 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | ACM Transactions on Asian and Low-Resource Language Information Processing |
| best_oa_location.landing_page_url | https://doi.org/10.1145/3624012 |
| primary_location.id | doi:10.1145/3624012 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306421405 |
| primary_location.source.issn | 2375-4699, 2375-4702 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2375-4699 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | ACM Transactions on Asian and Low-Resource Language Information Processing |
| primary_location.source.host_organization | https://openalex.org/P4310319798 |
| primary_location.source.host_organization_name | Association for Computing Machinery |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319798 |
| primary_location.source.host_organization_lineage_names | Association for Computing Machinery |
| primary_location.license | |
| primary_location.pdf_url | https://dl.acm.org/doi/pdf/10.1145/3624012 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | ACM Transactions on Asian and Low-Resource Language Information Processing |
| primary_location.landing_page_url | https://doi.org/10.1145/3624012 |
| publication_date | 2023-11-14 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2919350184, https://openalex.org/W2999719588, https://openalex.org/W3020334141, https://openalex.org/W2810258172, https://openalex.org/W3036066542, https://openalex.org/W4283777872, https://openalex.org/W3209875211, https://openalex.org/W3156904194, https://openalex.org/W3143134197, https://openalex.org/W3003681195, https://openalex.org/W4200260807, https://openalex.org/W4220883868, https://openalex.org/W3203412535, https://openalex.org/W2995912770, https://openalex.org/W4308325149 |
| referenced_works_count | 15 |
| abstract_inverted_index.a | 17, 40, 47, 50, 70, 99, 152 |
| abstract_inverted_index.DL | 55, 100 |
| abstract_inverted_index.an | 219 |
| abstract_inverted_index.as | 61, 94, 96, 108 |
| abstract_inverted_index.be | 35 |
| abstract_inverted_index.by | 98, 163 |
| abstract_inverted_index.in | 27, 57, 75, 86, 134, 198, 255 |
| abstract_inverted_index.is | 114, 123, 148, 247 |
| abstract_inverted_index.of | 46, 54, 78, 176, 200, 221, 224, 227, 231, 234, 239, 262, 265, 268, 272, 275, 280 |
| abstract_inverted_index.on | 19, 68, 170 |
| abstract_inverted_index.to | 22, 72 |
| abstract_inverted_index.F-1 | 204, 229, 270 |
| abstract_inverted_index.For | 211, 241 |
| abstract_inverted_index.The | 145 |
| abstract_inverted_index.and | 65, 113, 192, 207, 236, 277 |
| abstract_inverted_index.are | 161, 187 |
| abstract_inverted_index.for | 42, 116, 126, 142, 190 |
| abstract_inverted_index.has | 105, 139, 183 |
| abstract_inverted_index.out | 125, 150, 189, 250 |
| abstract_inverted_index.the | 76, 120, 136, 174, 177, 212, 215, 252, 257 |
| abstract_inverted_index.way | 41 |
| abstract_inverted_index.web | 109, 181, 244 |
| abstract_inverted_index.(DL) | 10 |
| abstract_inverted_index.77%, | 276 |
| abstract_inverted_index.88%, | 235 |
| abstract_inverted_index.91%, | 232, 273 |
| abstract_inverted_index.92%, | 266 |
| abstract_inverted_index.93%, | 228 |
| abstract_inverted_index.94%, | 269 |
| abstract_inverted_index.95%, | 225 |
| abstract_inverted_index.96%, | 263 |
| abstract_inverted_index.98%, | 222 |
| abstract_inverted_index.KPRO | 62 |
| abstract_inverted_index.RMSE | 233, 274 |
| abstract_inverted_index.Then | 119 |
| abstract_inverted_index.This | 37, 81 |
| abstract_inverted_index.When | 0 |
| abstract_inverted_index.also | 248 |
| abstract_inverted_index.been | 106, 140, 184 |
| abstract_inverted_index.data | 182 |
| abstract_inverted_index.deep | 8 |
| abstract_inverted_index.from | 180 |
| abstract_inverted_index.high | 31 |
| abstract_inverted_index.into | 49 |
| abstract_inverted_index.loss | 208, 237, 278 |
| abstract_inverted_index.same | 253 |
| abstract_inverted_index.text | 104, 112, 129, 138, 178 |
| abstract_inverted_index.this | 127, 171 |
| abstract_inverted_index.well | 95 |
| abstract_inverted_index.will | 12, 34 |
| abstract_inverted_index.with | 2, 30, 251 |
| abstract_inverted_index.word | 51, 117 |
| abstract_inverted_index.Based | 169 |
| abstract_inverted_index.Here, | 102 |
| abstract_inverted_index.RMSE, | 206 |
| abstract_inverted_index.based | 67, 111, 155 |
| abstract_inverted_index.curve | 209, 238, 279 |
| abstract_inverted_index.embed | 73 |
| abstract_inverted_index.input | 103 |
| abstract_inverted_index.known | 60 |
| abstract_inverted_index.layer | 53 |
| abstract_inverted_index.least | 131 |
| abstract_inverted_index.model | 154 |
| abstract_inverted_index.novel | 20, 84 |
| abstract_inverted_index.score | 230, 271 |
| abstract_inverted_index.study | 38 |
| abstract_inverted_index.taken | 107 |
| abstract_inverted_index.terms | 199 |
| abstract_inverted_index.train | 23 |
| abstract_inverted_index.using | 7, 130, 151 |
| abstract_inverted_index.which | 135, 256 |
| abstract_inverted_index.68.2%. | 281 |
| abstract_inverted_index.70.2%. | 240 |
| abstract_inverted_index.Markov | 153 |
| abstract_inverted_index.corpus | 18 |
| abstract_inverted_index.mapped | 141 |
| abstract_inverted_index.recall | 226, 267 |
| abstract_inverted_index.score, | 205 |
| abstract_inverted_index.square | 132 |
| abstract_inverted_index.tested | 1 |
| abstract_inverted_index.themes | 21 |
| abstract_inverted_index.Results | 186 |
| abstract_inverted_index.Twitter | 191, 213 |
| abstract_inverted_index.attains | 218 |
| abstract_inverted_index.carried | 124, 149, 188, 249 |
| abstract_inverted_index.dataset | 48, 245 |
| abstract_inverted_index.encoder | 157 |
| abstract_inverted_index.feature | 92, 121, 143, 146 |
| abstract_inverted_index.machine | 24 |
| abstract_inverted_index.mapping | 122, 133 |
| abstract_inverted_index.methods | 26, 56, 85 |
| abstract_inverted_index.natural | 88 |
| abstract_inverted_index.opinion | 79 |
| abstract_inverted_index.output, | 173 |
| abstract_inverted_index.popular | 3 |
| abstract_inverted_index.produce | 13 |
| abstract_inverted_index.recall, | 203 |
| abstract_inverted_index.Building | 16 |
| abstract_inverted_index.Facebook | 193 |
| abstract_inverted_index.accuracy | 220, 261 |
| abstract_inverted_index.acquires | 260 |
| abstract_inverted_index.analysis | 196, 246 |
| abstract_inverted_index.dataset, | 214 |
| abstract_inverted_index.datasets | 197 |
| abstract_inverted_index.features | 45, 160 |
| abstract_inverted_index.however, | 33 |
| abstract_inverted_index.language | 89 |
| abstract_inverted_index.learning | 9, 25 |
| abstract_inverted_index.obtained | 179 |
| abstract_inverted_index.ontology | 77, 110, 243 |
| abstract_inverted_index.positive | 14 |
| abstract_inverted_index.proposed | 216, 258 |
| abstract_inverted_index.proposes | 39, 83 |
| abstract_inverted_index.research | 82 |
| abstract_inverted_index.results. | 15 |
| abstract_inverted_index.Extracted | 159 |
| abstract_inverted_index.Facebook, | 242 |
| abstract_inverted_index.accuracy, | 201 |
| abstract_inverted_index.analysis. | 210 |
| abstract_inverted_index.analyzed. | 185 |
| abstract_inverted_index.attention | 167 |
| abstract_inverted_index.datasets, | 4 |
| abstract_inverted_index.datasets. | 80 |
| abstract_inverted_index.efficient | 44 |
| abstract_inverted_index.embedding | 52 |
| abstract_inverted_index.knowledge | 74 |
| abstract_inverted_index.networks. | 168 |
| abstract_inverted_index.precision | 223, 264 |
| abstract_inverted_index.procedure | 71 |
| abstract_inverted_index.processed | 115, 128 |
| abstract_inverted_index.sentiment | 5, 28, 58, 175 |
| abstract_inverted_index.utilizing | 91, 164 |
| abstract_inverted_index.(knowledge | 63 |
| abstract_inverted_index.algorithms | 11 |
| abstract_inverted_index.assurance, | 32 |
| abstract_inverted_index.classified | 162, 172 |
| abstract_inverted_index.difficult. | 36 |
| abstract_inverted_index.embedding. | 118 |
| abstract_inverted_index.extraction | 93, 147 |
| abstract_inverted_index.ontology), | 69 |
| abstract_inverted_index.parameters | 254 |
| abstract_inverted_index.precision, | 202 |
| abstract_inverted_index.processing | 64, 90 |
| abstract_inverted_index.technique. | 101 |
| abstract_inverted_index.extraction. | 144 |
| abstract_inverted_index.sentimental | 195 |
| abstract_inverted_index.auto-feature | 156 |
| abstract_inverted_index.hierarchical | 165 |
| abstract_inverted_index.representing | 43 |
| abstract_inverted_index.convolutional | 166 |
| abstract_inverted_index.categorization | 6 |
| abstract_inverted_index.classification | 29, 59, 97 |
| abstract_inverted_index.ontology-based | 87, 194 |
| abstract_inverted_index.representation | 66 |
| abstract_inverted_index.sentiment-based | 137 |
| abstract_inverted_index.(MarMod_AuFeaEnCod). | 158 |
| abstract_inverted_index.MarMod_AuFeaEnCod_HCAN | 217, 259 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 96 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.8100000023841858 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile.value | 0.8729782 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |