OpenELM: An Efficient Language Model Family with Open Training and Inference Framework Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2404.14619
The reproducibility and transparency of large language models are crucial for advancing open research, ensuring the trustworthiness of results, and enabling investigations into data and model biases, as well as potential risks. To this end, we release OpenELM, a state-of-the-art open language model. OpenELM uses a layer-wise scaling strategy to efficiently allocate parameters within each layer of the transformer model, leading to enhanced accuracy. For example, with a parameter budget of approximately one billion parameters, OpenELM exhibits a 2.36% improvement in accuracy compared to OLMo while requiring $2\times$ fewer pre-training tokens. Diverging from prior practices that only provide model weights and inference code, and pre-train on private datasets, our release includes the complete framework for training and evaluation of the language model on publicly available datasets, including training logs, multiple checkpoints, and pre-training configurations. We also release code to convert models to MLX library for inference and fine-tuning on Apple devices. This comprehensive release aims to empower and strengthen the open research community, paving the way for future open research endeavors. Our source code along with pre-trained model weights and training recipes is available at \url{https://github.com/apple/corenet}. Additionally, \model models can be found on HuggingFace at: \url{https://huggingface.co/apple/OpenELM}.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2404.14619
- https://arxiv.org/pdf/2404.14619
- OA Status
- green
- Cited By
- 2
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4395443230
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4395443230Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2404.14619Digital Object Identifier
- Title
-
OpenELM: An Efficient Language Model Family with Open Training and Inference FrameworkWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-04-22Full publication date if available
- Authors
-
Sachin Mehta, Mohammad Hossein Sekhavat, Qingqing Cao, Maxwell Horton, Yanzi Jin, Chenfan Sun, Iman Mirzadeh, Mahyar Najibi, Dmitry Belenko, Peter Zatloukal, Mohammad RastegariList of authors in order
- Landing page
-
https://arxiv.org/abs/2404.14619Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2404.14619Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2404.14619Direct OA link when available
- Concepts
-
Computer science, Inference, Open source, Training (meteorology), Natural language processing, Artificial intelligence, Programming language, Geography, Software, MeteorologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4395443230 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2404.14619 |
| ids.doi | https://doi.org/10.48550/arxiv.2404.14619 |
| ids.openalex | https://openalex.org/W4395443230 |
| fwci | |
| type | preprint |
| title | OpenELM: An Efficient Language Model Family with Open Training and Inference Framework |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10028 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9171000123023987 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Topic Modeling |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6958897113800049 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2776214188 |
| concepts[1].level | 2 |
| concepts[1].score | 0.67457115650177 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[1].display_name | Inference |
| concepts[2].id | https://openalex.org/C3018397939 |
| concepts[2].level | 3 |
| concepts[2].score | 0.5362009406089783 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q3644502 |
| concepts[2].display_name | Open source |
| concepts[3].id | https://openalex.org/C2777211547 |
| concepts[3].level | 2 |
| concepts[3].score | 0.45028290152549744 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q17141490 |
| concepts[3].display_name | Training (meteorology) |
| concepts[4].id | https://openalex.org/C204321447 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4457639753818512 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[4].display_name | Natural language processing |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3977229595184326 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C199360897 |
| concepts[6].level | 1 |
| concepts[6].score | 0.35628852248191833 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[6].display_name | Programming language |
| concepts[7].id | https://openalex.org/C205649164 |
| concepts[7].level | 0 |
| concepts[7].score | 0.0623190701007843 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[7].display_name | Geography |
| concepts[8].id | https://openalex.org/C2777904410 |
| concepts[8].level | 2 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7397 |
| concepts[8].display_name | Software |
| concepts[9].id | https://openalex.org/C153294291 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q25261 |
| concepts[9].display_name | Meteorology |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.6958897113800049 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/inference |
| keywords[1].score | 0.67457115650177 |
| keywords[1].display_name | Inference |
| keywords[2].id | https://openalex.org/keywords/open-source |
| keywords[2].score | 0.5362009406089783 |
| keywords[2].display_name | Open source |
| keywords[3].id | https://openalex.org/keywords/training |
| keywords[3].score | 0.45028290152549744 |
| keywords[3].display_name | Training (meteorology) |
| keywords[4].id | https://openalex.org/keywords/natural-language-processing |
| keywords[4].score | 0.4457639753818512 |
| keywords[4].display_name | Natural language processing |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.3977229595184326 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/programming-language |
| keywords[6].score | 0.35628852248191833 |
| keywords[6].display_name | Programming language |
| keywords[7].id | https://openalex.org/keywords/geography |
| keywords[7].score | 0.0623190701007843 |
| keywords[7].display_name | Geography |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2404.14619 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2404.14619 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2404.14619 |
| locations[1].id | doi:10.48550/arxiv.2404.14619 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2404.14619 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5074132108 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5420-4725 |
| authorships[0].author.display_name | Sachin Mehta |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Mehta, Sachin |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5095886473 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Mohammad Hossein Sekhavat |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Sekhavat, Mohammad Hossein |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5076244567 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9306-0306 |
| authorships[2].author.display_name | Qingqing Cao |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Cao, Qingqing |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5012428670 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Maxwell Horton |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Horton, Maxwell |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5008400874 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Yanzi Jin |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Jin, Yanzi |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5070313801 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-8246-4869 |
| authorships[5].author.display_name | Chenfan Sun |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Sun, Chenfan |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5079412282 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Iman Mirzadeh |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Mirzadeh, Iman |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5021900923 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | Mahyar Najibi |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Najibi, Mahyar |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5093547721 |
| authorships[8].author.orcid | |
| authorships[8].author.display_name | Dmitry Belenko |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Belenko, Dmitry |
| authorships[8].is_corresponding | False |
| authorships[9].author.id | https://openalex.org/A5031481674 |
| authorships[9].author.orcid | https://orcid.org/0009-0000-0451-0591 |
| authorships[9].author.display_name | Peter Zatloukal |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Zatloukal, Peter |
| authorships[9].is_corresponding | False |
| authorships[10].author.id | https://openalex.org/A5056246621 |
| authorships[10].author.orcid | https://orcid.org/0000-0001-9606-3687 |
| authorships[10].author.display_name | Mohammad Rastegari |
| authorships[10].author_position | last |
| authorships[10].raw_author_name | Rastegari, Mohammad |
| authorships[10].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2404.14619 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-04-26T00:00:00 |
| display_name | OpenELM: An Efficient Language Model Family with Open Training and Inference Framework |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10028 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9171000123023987 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Topic Modeling |
| related_works | https://openalex.org/W230091440, https://openalex.org/W2233261550, https://openalex.org/W2810751659, https://openalex.org/W258997015, https://openalex.org/W2997094352, https://openalex.org/W3216976533, https://openalex.org/W100620283, https://openalex.org/W2495260952, https://openalex.org/W4366179611, https://openalex.org/W2996078371 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2404.14619 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2404.14619 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2404.14619 |
| primary_location.id | pmh:oai:arXiv.org:2404.14619 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2404.14619 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2404.14619 |
| publication_date | 2024-04-22 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 38, 45, 67, 77 |
| abstract_inverted_index.To | 32 |
| abstract_inverted_index.We | 134 |
| abstract_inverted_index.as | 27, 29 |
| abstract_inverted_index.at | 184 |
| abstract_inverted_index.be | 190 |
| abstract_inverted_index.in | 80 |
| abstract_inverted_index.is | 182 |
| abstract_inverted_index.of | 4, 17, 56, 70, 118 |
| abstract_inverted_index.on | 105, 122, 148, 192 |
| abstract_inverted_index.to | 49, 61, 83, 138, 141, 155 |
| abstract_inverted_index.we | 35 |
| abstract_inverted_index.For | 64 |
| abstract_inverted_index.MLX | 142 |
| abstract_inverted_index.Our | 171 |
| abstract_inverted_index.The | 0 |
| abstract_inverted_index.and | 2, 19, 24, 100, 103, 116, 131, 146, 157, 179 |
| abstract_inverted_index.are | 8 |
| abstract_inverted_index.at: | 194 |
| abstract_inverted_index.can | 189 |
| abstract_inverted_index.for | 10, 114, 144, 166 |
| abstract_inverted_index.one | 72 |
| abstract_inverted_index.our | 108 |
| abstract_inverted_index.the | 15, 57, 111, 119, 159, 164 |
| abstract_inverted_index.way | 165 |
| abstract_inverted_index.OLMo | 84 |
| abstract_inverted_index.This | 151 |
| abstract_inverted_index.aims | 154 |
| abstract_inverted_index.also | 135 |
| abstract_inverted_index.code | 137, 173 |
| abstract_inverted_index.data | 23 |
| abstract_inverted_index.each | 54 |
| abstract_inverted_index.end, | 34 |
| abstract_inverted_index.from | 92 |
| abstract_inverted_index.into | 22 |
| abstract_inverted_index.only | 96 |
| abstract_inverted_index.open | 12, 40, 160, 168 |
| abstract_inverted_index.that | 95 |
| abstract_inverted_index.this | 33 |
| abstract_inverted_index.uses | 44 |
| abstract_inverted_index.well | 28 |
| abstract_inverted_index.with | 66, 175 |
| abstract_inverted_index.2.36% | 78 |
| abstract_inverted_index.Apple | 149 |
| abstract_inverted_index.along | 174 |
| abstract_inverted_index.code, | 102 |
| abstract_inverted_index.fewer | 88 |
| abstract_inverted_index.found | 191 |
| abstract_inverted_index.large | 5 |
| abstract_inverted_index.layer | 55 |
| abstract_inverted_index.logs, | 128 |
| abstract_inverted_index.model | 25, 98, 121, 177 |
| abstract_inverted_index.prior | 93 |
| abstract_inverted_index.while | 85 |
| abstract_inverted_index.\model | 187 |
| abstract_inverted_index.budget | 69 |
| abstract_inverted_index.future | 167 |
| abstract_inverted_index.model, | 59 |
| abstract_inverted_index.model. | 42 |
| abstract_inverted_index.models | 7, 140, 188 |
| abstract_inverted_index.paving | 163 |
| abstract_inverted_index.risks. | 31 |
| abstract_inverted_index.source | 172 |
| abstract_inverted_index.within | 53 |
| abstract_inverted_index.OpenELM | 43, 75 |
| abstract_inverted_index.biases, | 26 |
| abstract_inverted_index.billion | 73 |
| abstract_inverted_index.convert | 139 |
| abstract_inverted_index.crucial | 9 |
| abstract_inverted_index.empower | 156 |
| abstract_inverted_index.leading | 60 |
| abstract_inverted_index.library | 143 |
| abstract_inverted_index.private | 106 |
| abstract_inverted_index.provide | 97 |
| abstract_inverted_index.recipes | 181 |
| abstract_inverted_index.release | 36, 109, 136, 153 |
| abstract_inverted_index.scaling | 47 |
| abstract_inverted_index.tokens. | 90 |
| abstract_inverted_index.weights | 99, 178 |
| abstract_inverted_index.OpenELM, | 37 |
| abstract_inverted_index.accuracy | 81 |
| abstract_inverted_index.allocate | 51 |
| abstract_inverted_index.compared | 82 |
| abstract_inverted_index.complete | 112 |
| abstract_inverted_index.devices. | 150 |
| abstract_inverted_index.enabling | 20 |
| abstract_inverted_index.enhanced | 62 |
| abstract_inverted_index.ensuring | 14 |
| abstract_inverted_index.example, | 65 |
| abstract_inverted_index.exhibits | 76 |
| abstract_inverted_index.includes | 110 |
| abstract_inverted_index.language | 6, 41, 120 |
| abstract_inverted_index.multiple | 129 |
| abstract_inverted_index.publicly | 123 |
| abstract_inverted_index.research | 161, 169 |
| abstract_inverted_index.results, | 18 |
| abstract_inverted_index.strategy | 48 |
| abstract_inverted_index.training | 115, 127, 180 |
| abstract_inverted_index.$2\times$ | 87 |
| abstract_inverted_index.Diverging | 91 |
| abstract_inverted_index.accuracy. | 63 |
| abstract_inverted_index.advancing | 11 |
| abstract_inverted_index.available | 124, 183 |
| abstract_inverted_index.datasets, | 107, 125 |
| abstract_inverted_index.framework | 113 |
| abstract_inverted_index.including | 126 |
| abstract_inverted_index.inference | 101, 145 |
| abstract_inverted_index.parameter | 68 |
| abstract_inverted_index.potential | 30 |
| abstract_inverted_index.practices | 94 |
| abstract_inverted_index.pre-train | 104 |
| abstract_inverted_index.requiring | 86 |
| abstract_inverted_index.research, | 13 |
| abstract_inverted_index.community, | 162 |
| abstract_inverted_index.endeavors. | 170 |
| abstract_inverted_index.evaluation | 117 |
| abstract_inverted_index.layer-wise | 46 |
| abstract_inverted_index.parameters | 52 |
| abstract_inverted_index.strengthen | 158 |
| abstract_inverted_index.HuggingFace | 193 |
| abstract_inverted_index.efficiently | 50 |
| abstract_inverted_index.fine-tuning | 147 |
| abstract_inverted_index.improvement | 79 |
| abstract_inverted_index.parameters, | 74 |
| abstract_inverted_index.pre-trained | 176 |
| abstract_inverted_index.transformer | 58 |
| abstract_inverted_index.checkpoints, | 130 |
| abstract_inverted_index.pre-training | 89, 132 |
| abstract_inverted_index.transparency | 3 |
| abstract_inverted_index.Additionally, | 186 |
| abstract_inverted_index.approximately | 71 |
| abstract_inverted_index.comprehensive | 152 |
| abstract_inverted_index.investigations | 21 |
| abstract_inverted_index.configurations. | 133 |
| abstract_inverted_index.reproducibility | 1 |
| abstract_inverted_index.trustworthiness | 16 |
| abstract_inverted_index.state-of-the-art | 39 |
| abstract_inverted_index.\url{https://github.com/apple/corenet}. | 185 |
| abstract_inverted_index.\url{https://huggingface.co/apple/OpenELM}. | 195 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 11 |
| citation_normalized_percentile |