Optical hyperdimensional soft sensing: Speckle-based touch interface and tactile sensor Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2401.05435
Hyperdimensional computing (HDC) is an emerging computing paradigm that exploits the distributed representation of input data in a hyperdimensional space, the dimensions of which are typically between 1,000--10,000. The hyperdimensional distributed representation enables energy-efficient, low-latency, and noise-robust computations with low-precision and basic arithmetic operations. In this study, we propose optical hyperdimensional distributed representations based on laser speckles for adaptive, efficient, and low-latency optical sensor processing. In the proposed approach, sensory information is optically mapped into a hyperdimensional space with >250,000 dimensions, enabling HDC-based cognitive processing. We use this approach for the processing of a soft-touch interface and a tactile sensor and demonstrate to achieve high accuracy of touch or tactile recognition while significantly reducing training data amount and computational burdens, compared with previous machine-learning-based sensing approaches. Furthermore, we show that this approach enables adaptive recalibration to keep high accuracy even under different conditions.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.48550/arxiv.2401.05435
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4390832866
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4390832866Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2401.05435Digital Object Identifier
- Title
-
Optical hyperdimensional soft sensing: Speckle-based touch interface and tactile sensorWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-06Full publication date if available
- Authors
-
Kei Kitagawa, Kohei Tsuji, Koyo Sagehashi, Tomoaki Niiyama, Satoshi SunadaList of authors in order
- Landing page
-
https://doi.org/10.48550/arxiv.2401.05435Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.48550/arxiv.2401.05435Direct OA link when available
- Concepts
-
Computer science, Interface (matter), Speckle pattern, Computation, Latency (audio), Artificial intelligence, Computer vision, Algorithm, Parallel computing, Bubble, Maximum bubble pressure method, TelecommunicationsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4390832866 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2401.05435 |
| ids.doi | https://doi.org/10.48550/arxiv.2401.05435 |
| ids.openalex | https://openalex.org/W4390832866 |
| fwci | 0.0 |
| type | preprint |
| title | Optical hyperdimensional soft sensing: Speckle-based touch interface and tactile sensor |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12611 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9855999946594238 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Neural Networks and Reservoir Computing |
| topics[1].id | https://openalex.org/T10299 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9118000268936157 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Photonic and Optical Devices |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7257684469223022 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C113843644 |
| concepts[1].level | 4 |
| concepts[1].score | 0.594185471534729 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q901882 |
| concepts[1].display_name | Interface (matter) |
| concepts[2].id | https://openalex.org/C102290492 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5349005460739136 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7575045 |
| concepts[2].display_name | Speckle pattern |
| concepts[3].id | https://openalex.org/C45374587 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4996910095214844 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q12525525 |
| concepts[3].display_name | Computation |
| concepts[4].id | https://openalex.org/C82876162 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4338439702987671 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q17096504 |
| concepts[4].display_name | Latency (audio) |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4135409891605377 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C31972630 |
| concepts[6].level | 1 |
| concepts[6].score | 0.36556220054626465 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[6].display_name | Computer vision |
| concepts[7].id | https://openalex.org/C11413529 |
| concepts[7].level | 1 |
| concepts[7].score | 0.11243131756782532 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[7].display_name | Algorithm |
| concepts[8].id | https://openalex.org/C173608175 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q232661 |
| concepts[8].display_name | Parallel computing |
| concepts[9].id | https://openalex.org/C157915830 |
| concepts[9].level | 2 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2928001 |
| concepts[9].display_name | Bubble |
| concepts[10].id | https://openalex.org/C129307140 |
| concepts[10].level | 3 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q6795880 |
| concepts[10].display_name | Maximum bubble pressure method |
| concepts[11].id | https://openalex.org/C76155785 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[11].display_name | Telecommunications |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7257684469223022 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/interface |
| keywords[1].score | 0.594185471534729 |
| keywords[1].display_name | Interface (matter) |
| keywords[2].id | https://openalex.org/keywords/speckle-pattern |
| keywords[2].score | 0.5349005460739136 |
| keywords[2].display_name | Speckle pattern |
| keywords[3].id | https://openalex.org/keywords/computation |
| keywords[3].score | 0.4996910095214844 |
| keywords[3].display_name | Computation |
| keywords[4].id | https://openalex.org/keywords/latency |
| keywords[4].score | 0.4338439702987671 |
| keywords[4].display_name | Latency (audio) |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.4135409891605377 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/computer-vision |
| keywords[6].score | 0.36556220054626465 |
| keywords[6].display_name | Computer vision |
| keywords[7].id | https://openalex.org/keywords/algorithm |
| keywords[7].score | 0.11243131756782532 |
| keywords[7].display_name | Algorithm |
| language | en |
| locations[0].id | doi:10.48550/arxiv.2401.05435 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | |
| locations[0].raw_type | article-journal |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.48550/arxiv.2401.05435 |
| indexed_in | datacite |
| authorships[0].author.id | https://openalex.org/A5109136266 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Kei Kitagawa |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Kitagawa, Kei |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5035227488 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Kohei Tsuji |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Tsuji, Kohei |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5028947556 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Koyo Sagehashi |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Sagehashi, Koyo |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5082072732 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-3808-4839 |
| authorships[3].author.display_name | Tomoaki Niiyama |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Niiyama, Tomoaki |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5044971688 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-0466-8529 |
| authorships[4].author.display_name | Satoshi Sunada |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Sunada, Satoshi |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.48550/arxiv.2401.05435 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Optical hyperdimensional soft sensing: Speckle-based touch interface and tactile sensor |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12611 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9855999946594238 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Neural Networks and Reservoir Computing |
| related_works | https://openalex.org/W2793402697, https://openalex.org/W2019193285, https://openalex.org/W2042019967, https://openalex.org/W4391491570, https://openalex.org/W2157133621, https://openalex.org/W4386174346, https://openalex.org/W2093785611, https://openalex.org/W4224073133, https://openalex.org/W2056850745, https://openalex.org/W2049184638 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.48550/arxiv.2401.05435 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | |
| best_oa_location.raw_type | article-journal |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.48550/arxiv.2401.05435 |
| primary_location.id | doi:10.48550/arxiv.2401.05435 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | |
| primary_location.raw_type | article-journal |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.48550/arxiv.2401.05435 |
| publication_date | 2024-01-06 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 17, 75, 93, 97 |
| abstract_inverted_index.In | 44, 65 |
| abstract_inverted_index.We | 85 |
| abstract_inverted_index.an | 4 |
| abstract_inverted_index.in | 16 |
| abstract_inverted_index.is | 3, 71 |
| abstract_inverted_index.of | 13, 22, 92, 106 |
| abstract_inverted_index.on | 54 |
| abstract_inverted_index.or | 108 |
| abstract_inverted_index.to | 102, 135 |
| abstract_inverted_index.we | 47, 127 |
| abstract_inverted_index.The | 28 |
| abstract_inverted_index.and | 35, 40, 60, 96, 100, 117 |
| abstract_inverted_index.are | 24 |
| abstract_inverted_index.for | 57, 89 |
| abstract_inverted_index.the | 10, 20, 66, 90 |
| abstract_inverted_index.use | 86 |
| abstract_inverted_index.data | 15, 115 |
| abstract_inverted_index.even | 139 |
| abstract_inverted_index.high | 104, 137 |
| abstract_inverted_index.into | 74 |
| abstract_inverted_index.keep | 136 |
| abstract_inverted_index.show | 128 |
| abstract_inverted_index.that | 8, 129 |
| abstract_inverted_index.this | 45, 87, 130 |
| abstract_inverted_index.with | 38, 78, 121 |
| abstract_inverted_index.(HDC) | 2 |
| abstract_inverted_index.based | 53 |
| abstract_inverted_index.basic | 41 |
| abstract_inverted_index.input | 14 |
| abstract_inverted_index.laser | 55 |
| abstract_inverted_index.space | 77 |
| abstract_inverted_index.touch | 107 |
| abstract_inverted_index.under | 140 |
| abstract_inverted_index.which | 23 |
| abstract_inverted_index.while | 111 |
| abstract_inverted_index.amount | 116 |
| abstract_inverted_index.mapped | 73 |
| abstract_inverted_index.sensor | 63, 99 |
| abstract_inverted_index.space, | 19 |
| abstract_inverted_index.study, | 46 |
| abstract_inverted_index.achieve | 103 |
| abstract_inverted_index.between | 26 |
| abstract_inverted_index.enables | 32, 132 |
| abstract_inverted_index.optical | 49, 62 |
| abstract_inverted_index.propose | 48 |
| abstract_inverted_index.sensing | 124 |
| abstract_inverted_index.sensory | 69 |
| abstract_inverted_index.tactile | 98, 109 |
| abstract_inverted_index.accuracy | 105, 138 |
| abstract_inverted_index.adaptive | 133 |
| abstract_inverted_index.approach | 88, 131 |
| abstract_inverted_index.burdens, | 119 |
| abstract_inverted_index.compared | 120 |
| abstract_inverted_index.emerging | 5 |
| abstract_inverted_index.enabling | 81 |
| abstract_inverted_index.exploits | 9 |
| abstract_inverted_index.paradigm | 7 |
| abstract_inverted_index.previous | 122 |
| abstract_inverted_index.proposed | 67 |
| abstract_inverted_index.reducing | 113 |
| abstract_inverted_index.speckles | 56 |
| abstract_inverted_index.training | 114 |
| abstract_inverted_index.HDC-based | 82 |
| abstract_inverted_index.adaptive, | 58 |
| abstract_inverted_index.approach, | 68 |
| abstract_inverted_index.cognitive | 83 |
| abstract_inverted_index.computing | 1, 6 |
| abstract_inverted_index.different | 141 |
| abstract_inverted_index.interface | 95 |
| abstract_inverted_index.optically | 72 |
| abstract_inverted_index.typically | 25 |
| abstract_inverted_index.arithmetic | 42 |
| abstract_inverted_index.dimensions | 21 |
| abstract_inverted_index.efficient, | 59 |
| abstract_inverted_index.processing | 91 |
| abstract_inverted_index.soft-touch | 94 |
| abstract_inverted_index.>250,000 | 79 |
| abstract_inverted_index.approaches. | 125 |
| abstract_inverted_index.conditions. | 142 |
| abstract_inverted_index.demonstrate | 101 |
| abstract_inverted_index.dimensions, | 80 |
| abstract_inverted_index.distributed | 11, 30, 51 |
| abstract_inverted_index.information | 70 |
| abstract_inverted_index.low-latency | 61 |
| abstract_inverted_index.operations. | 43 |
| abstract_inverted_index.processing. | 64, 84 |
| abstract_inverted_index.recognition | 110 |
| abstract_inverted_index.Furthermore, | 126 |
| abstract_inverted_index.computations | 37 |
| abstract_inverted_index.low-latency, | 34 |
| abstract_inverted_index.noise-robust | 36 |
| abstract_inverted_index.computational | 118 |
| abstract_inverted_index.low-precision | 39 |
| abstract_inverted_index.recalibration | 134 |
| abstract_inverted_index.significantly | 112 |
| abstract_inverted_index.1,000--10,000. | 27 |
| abstract_inverted_index.representation | 12, 31 |
| abstract_inverted_index.representations | 52 |
| abstract_inverted_index.Hyperdimensional | 0 |
| abstract_inverted_index.hyperdimensional | 18, 29, 50, 76 |
| abstract_inverted_index.energy-efficient, | 33 |
| abstract_inverted_index.machine-learning-based | 123 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.8899999856948853 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile.value | 0.00561079 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |