OptiCarVis: Improving Automated Vehicle Functionality Visualizations Using Bayesian Optimization to Enhance User Experience Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1145/3706598.3713514
Automated vehicle (AV) acceptance relies on their understanding via feedback. While visualizations aim to enhance user understanding of AV's detection, prediction, and planning functionalities, establishing an optimal design is challenging. Traditional "one-size-fits-all" designs might be unsuitable, stemming from resource-intensive empirical evaluations. This paper introduces OptiCarVis, a set of Human-in-the-Loop (HITL) approaches using Multi-Objective Bayesian Optimization (MOBO) to optimize AV feedback visualizations. We compare conditions using eight expert and user-customized designs for a Warm-Start HITL MOBO. An online study (N=117) demonstrates OptiCarVis's efficacy in significantly improving trust, acceptance, perceived safety, and predictability without increasing cognitive load. OptiCarVis facilitates a comprehensive design space exploration, enhancing in-vehicle interfaces for optimal passenger experiences and broader applicability.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1145/3706598.3713514
- OA Status
- gold
- Cited By
- 1
- References
- 87
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4409750211
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4409750211Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1145/3706598.3713514Digital Object Identifier
- Title
-
OptiCarVis: Improving Automated Vehicle Functionality Visualizations Using Bayesian Optimization to Enhance User ExperienceWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-04-24Full publication date if available
- Authors
-
Pascal Jansen, Mark Colley, Svenja Krauß, Daniel Hirschle, Enrico RukzioList of authors in order
- Landing page
-
https://doi.org/10.1145/3706598.3713514Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1145/3706598.3713514Direct OA link when available
- Concepts
-
Computer science, Bayesian optimization, Human–computer interaction, Bayesian probability, Visualization, Machine learning, Artificial intelligenceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
87Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4409750211 |
|---|---|
| doi | https://doi.org/10.1145/3706598.3713514 |
| ids.doi | https://doi.org/10.1145/3706598.3713514 |
| ids.openalex | https://openalex.org/W4409750211 |
| fwci | 7.13387101 |
| type | article |
| title | OptiCarVis: Improving Automated Vehicle Functionality Visualizations Using Bayesian Optimization to Enhance User Experience |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 23 |
| biblio.first_page | 1 |
| topics[0].id | https://openalex.org/T10525 |
| topics[0].field.id | https://openalex.org/fields/32 |
| topics[0].field.display_name | Psychology |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3207 |
| topics[0].subfield.display_name | Social Psychology |
| topics[0].display_name | Human-Automation Interaction and Safety |
| topics[1].id | https://openalex.org/T11099 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9969000220298767 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2203 |
| topics[1].subfield.display_name | Automotive Engineering |
| topics[1].display_name | Autonomous Vehicle Technology and Safety |
| topics[2].id | https://openalex.org/T10370 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9894000291824341 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2213 |
| topics[2].subfield.display_name | Safety, Risk, Reliability and Quality |
| topics[2].display_name | Traffic and Road Safety |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8120425939559937 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2778049539 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6917046308517456 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q17002908 |
| concepts[1].display_name | Bayesian optimization |
| concepts[2].id | https://openalex.org/C107457646 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5393393635749817 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q207434 |
| concepts[2].display_name | Human–computer interaction |
| concepts[3].id | https://openalex.org/C107673813 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5100951790809631 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[3].display_name | Bayesian probability |
| concepts[4].id | https://openalex.org/C36464697 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4887516498565674 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q451553 |
| concepts[4].display_name | Visualization |
| concepts[5].id | https://openalex.org/C119857082 |
| concepts[5].level | 1 |
| concepts[5].score | 0.22510188817977905 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[5].display_name | Machine learning |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.20937180519104004 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8120425939559937 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/bayesian-optimization |
| keywords[1].score | 0.6917046308517456 |
| keywords[1].display_name | Bayesian optimization |
| keywords[2].id | https://openalex.org/keywords/human–computer-interaction |
| keywords[2].score | 0.5393393635749817 |
| keywords[2].display_name | Human–computer interaction |
| keywords[3].id | https://openalex.org/keywords/bayesian-probability |
| keywords[3].score | 0.5100951790809631 |
| keywords[3].display_name | Bayesian probability |
| keywords[4].id | https://openalex.org/keywords/visualization |
| keywords[4].score | 0.4887516498565674 |
| keywords[4].display_name | Visualization |
| keywords[5].id | https://openalex.org/keywords/machine-learning |
| keywords[5].score | 0.22510188817977905 |
| keywords[5].display_name | Machine learning |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.20937180519104004 |
| keywords[6].display_name | Artificial intelligence |
| language | en |
| locations[0].id | doi:10.1145/3706598.3713514 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the 2025 CHI Conference on Human Factors in Computing Systems |
| locations[0].landing_page_url | https://doi.org/10.1145/3706598.3713514 |
| locations[1].id | pmh:oai:arXiv.org:2501.06757 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | https://arxiv.org/pdf/2501.06757 |
| locations[1].version | submittedVersion |
| locations[1].raw_type | text |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://arxiv.org/abs/2501.06757 |
| indexed_in | arxiv, crossref |
| authorships[0].author.id | https://openalex.org/A5067059810 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9335-5462 |
| authorships[0].author.display_name | Pascal Jansen |
| authorships[0].countries | DE |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I196349391 |
| authorships[0].affiliations[0].raw_affiliation_string | Institute of Media Informatics, Ulm University, Ulm, Baden-Württemberg, Germany |
| authorships[0].institutions[0].id | https://openalex.org/I196349391 |
| authorships[0].institutions[0].ror | https://ror.org/032000t02 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I196349391 |
| authorships[0].institutions[0].country_code | DE |
| authorships[0].institutions[0].display_name | Universität Ulm |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Pascal Jansen |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Institute of Media Informatics, Ulm University, Ulm, Baden-Württemberg, Germany |
| authorships[1].author.id | https://openalex.org/A5026729075 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5207-5029 |
| authorships[1].author.display_name | Mark Colley |
| authorships[1].countries | DE, US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I196349391, https://openalex.org/I205783295 |
| authorships[1].affiliations[0].raw_affiliation_string | Ulm University, Ulm, Germany and Cornell Tech, New York City, USA |
| authorships[1].institutions[0].id | https://openalex.org/I196349391 |
| authorships[1].institutions[0].ror | https://ror.org/032000t02 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I196349391 |
| authorships[1].institutions[0].country_code | DE |
| authorships[1].institutions[0].display_name | Universität Ulm |
| authorships[1].institutions[1].id | https://openalex.org/I205783295 |
| authorships[1].institutions[1].ror | https://ror.org/05bnh6r87 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I205783295 |
| authorships[1].institutions[1].country_code | US |
| authorships[1].institutions[1].display_name | Cornell University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Mark Colley |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Ulm University, Ulm, Germany and Cornell Tech, New York City, USA |
| authorships[2].author.id | https://openalex.org/A5117286249 |
| authorships[2].author.orcid | https://orcid.org/0009-0002-4047-0130 |
| authorships[2].author.display_name | Svenja Krauß |
| authorships[2].countries | DE |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I196349391 |
| authorships[2].affiliations[0].raw_affiliation_string | Institute of Media Informatics, Ulm University, Ulm, Germany |
| authorships[2].institutions[0].id | https://openalex.org/I196349391 |
| authorships[2].institutions[0].ror | https://ror.org/032000t02 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I196349391 |
| authorships[2].institutions[0].country_code | DE |
| authorships[2].institutions[0].display_name | Universität Ulm |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Svenja Krauß |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Institute of Media Informatics, Ulm University, Ulm, Germany |
| authorships[3].author.id | https://openalex.org/A5117286250 |
| authorships[3].author.orcid | https://orcid.org/0009-0004-9483-4328 |
| authorships[3].author.display_name | Daniel Hirschle |
| authorships[3].countries | DE |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I196349391 |
| authorships[3].affiliations[0].raw_affiliation_string | Universität Ulm, Ulm, Baden-Württemberg, Germany |
| authorships[3].institutions[0].id | https://openalex.org/I196349391 |
| authorships[3].institutions[0].ror | https://ror.org/032000t02 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I196349391 |
| authorships[3].institutions[0].country_code | DE |
| authorships[3].institutions[0].display_name | Universität Ulm |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Daniel Hirschle |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Universität Ulm, Ulm, Baden-Württemberg, Germany |
| authorships[4].author.id | https://openalex.org/A5089009282 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-4213-2226 |
| authorships[4].author.display_name | Enrico Rukzio |
| authorships[4].countries | DE |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I196349391 |
| authorships[4].affiliations[0].raw_affiliation_string | Ulm University, Ulm, Germany |
| authorships[4].institutions[0].id | https://openalex.org/I196349391 |
| authorships[4].institutions[0].ror | https://ror.org/032000t02 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I196349391 |
| authorships[4].institutions[0].country_code | DE |
| authorships[4].institutions[0].display_name | Universität Ulm |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Enrico Rukzio |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Ulm University, Ulm, Germany |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1145/3706598.3713514 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | OptiCarVis: Improving Automated Vehicle Functionality Visualizations Using Bayesian Optimization to Enhance User Experience |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10525 |
| primary_topic.field.id | https://openalex.org/fields/32 |
| primary_topic.field.display_name | Psychology |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3207 |
| primary_topic.subfield.display_name | Social Psychology |
| primary_topic.display_name | Human-Automation Interaction and Safety |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W3106461837, https://openalex.org/W2068608913, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W4401858220 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1145/3706598.3713514 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the 2025 CHI Conference on Human Factors in Computing Systems |
| best_oa_location.landing_page_url | https://doi.org/10.1145/3706598.3713514 |
| primary_location.id | doi:10.1145/3706598.3713514 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the 2025 CHI Conference on Human Factors in Computing Systems |
| primary_location.landing_page_url | https://doi.org/10.1145/3706598.3713514 |
| publication_date | 2025-04-24 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2899230372, https://openalex.org/W3201961312, https://openalex.org/W2974515736, https://openalex.org/W2049951042, https://openalex.org/W3207184441, https://openalex.org/W4224909974, https://openalex.org/W4381164001, https://openalex.org/W3048790906, https://openalex.org/W3117150885, https://openalex.org/W3086578040, https://openalex.org/W3162214210, https://openalex.org/W4402350007, https://openalex.org/W4200027765, https://openalex.org/W3199512286, https://openalex.org/W3199184274, https://openalex.org/W4380369012, https://openalex.org/W4284899358, https://openalex.org/W4390815433, https://openalex.org/W3163283793, https://openalex.org/W1791587663, https://openalex.org/W2462934404, https://openalex.org/W4385322956, https://openalex.org/W2911600290, https://openalex.org/W1550321890, https://openalex.org/W3120767972, https://openalex.org/W3031314726, https://openalex.org/W316935178, https://openalex.org/W2072500831, https://openalex.org/W4383681677, https://openalex.org/W1985926185, https://openalex.org/W4225092338, https://openalex.org/W2157289187, https://openalex.org/W2591972220, https://openalex.org/W1579630868, https://openalex.org/W2161054318, https://openalex.org/W220935706, https://openalex.org/W4321593465, https://openalex.org/W4399070517, https://openalex.org/W4284890365, https://openalex.org/W3152860878, https://openalex.org/W2401887447, https://openalex.org/W2045128528, https://openalex.org/W2800029302, https://openalex.org/W4307476004, https://openalex.org/W3023257870, https://openalex.org/W2889775133, https://openalex.org/W2973568968, https://openalex.org/W3121623025, https://openalex.org/W2164777277, https://openalex.org/W3085913292, https://openalex.org/W4243342770, https://openalex.org/W4317795064, https://openalex.org/W4393309891, https://openalex.org/W2896127244, https://openalex.org/W4205193019, https://openalex.org/W1997188340, https://openalex.org/W3093828406, https://openalex.org/W4307476010, https://openalex.org/W4296782671, https://openalex.org/W2113250037, https://openalex.org/W2468750428, https://openalex.org/W4288099294, https://openalex.org/W2571810020, https://openalex.org/W2516831108, https://openalex.org/W2963697717, https://openalex.org/W3163810540, https://openalex.org/W2192203593, https://openalex.org/W2483723780, https://openalex.org/W2130267005, https://openalex.org/W4296786636, https://openalex.org/W2151019861, https://openalex.org/W2122570643, https://openalex.org/W2947746809, https://openalex.org/W4401882318, https://openalex.org/W2157682165, https://openalex.org/W4281633309, https://openalex.org/W2128213565, https://openalex.org/W4310197348, https://openalex.org/W4385569631, https://openalex.org/W3160571999, https://openalex.org/W4327598434, https://openalex.org/W2972021366, https://openalex.org/W56473762, https://openalex.org/W3124688585, https://openalex.org/W2990138404, https://openalex.org/W2287274924, https://openalex.org/W3163165591 |
| referenced_works_count | 87 |
| abstract_inverted_index.a | 45, 71, 97 |
| abstract_inverted_index.AV | 58 |
| abstract_inverted_index.An | 75 |
| abstract_inverted_index.We | 61 |
| abstract_inverted_index.an | 25 |
| abstract_inverted_index.be | 34 |
| abstract_inverted_index.in | 82 |
| abstract_inverted_index.is | 28 |
| abstract_inverted_index.of | 17, 47 |
| abstract_inverted_index.on | 5 |
| abstract_inverted_index.to | 13, 56 |
| abstract_inverted_index.aim | 12 |
| abstract_inverted_index.and | 21, 67, 89, 109 |
| abstract_inverted_index.for | 70, 105 |
| abstract_inverted_index.set | 46 |
| abstract_inverted_index.via | 8 |
| abstract_inverted_index.(AV) | 2 |
| abstract_inverted_index.AV's | 18 |
| abstract_inverted_index.HITL | 73 |
| abstract_inverted_index.This | 41 |
| abstract_inverted_index.from | 37 |
| abstract_inverted_index.user | 15 |
| abstract_inverted_index.MOBO. | 74 |
| abstract_inverted_index.While | 10 |
| abstract_inverted_index.eight | 65 |
| abstract_inverted_index.load. | 94 |
| abstract_inverted_index.might | 33 |
| abstract_inverted_index.paper | 42 |
| abstract_inverted_index.space | 100 |
| abstract_inverted_index.study | 77 |
| abstract_inverted_index.their | 6 |
| abstract_inverted_index.using | 51, 64 |
| abstract_inverted_index.(HITL) | 49 |
| abstract_inverted_index.(MOBO) | 55 |
| abstract_inverted_index.design | 27, 99 |
| abstract_inverted_index.expert | 66 |
| abstract_inverted_index.online | 76 |
| abstract_inverted_index.relies | 4 |
| abstract_inverted_index.trust, | 85 |
| abstract_inverted_index.(N=117) | 78 |
| abstract_inverted_index.broader | 110 |
| abstract_inverted_index.compare | 62 |
| abstract_inverted_index.designs | 32, 69 |
| abstract_inverted_index.enhance | 14 |
| abstract_inverted_index.optimal | 26, 106 |
| abstract_inverted_index.safety, | 88 |
| abstract_inverted_index.vehicle | 1 |
| abstract_inverted_index.without | 91 |
| abstract_inverted_index.Bayesian | 53 |
| abstract_inverted_index.efficacy | 81 |
| abstract_inverted_index.feedback | 59 |
| abstract_inverted_index.optimize | 57 |
| abstract_inverted_index.planning | 22 |
| abstract_inverted_index.stemming | 36 |
| abstract_inverted_index.Automated | 0 |
| abstract_inverted_index.cognitive | 93 |
| abstract_inverted_index.empirical | 39 |
| abstract_inverted_index.enhancing | 102 |
| abstract_inverted_index.feedback. | 9 |
| abstract_inverted_index.improving | 84 |
| abstract_inverted_index.passenger | 107 |
| abstract_inverted_index.perceived | 87 |
| abstract_inverted_index.OptiCarVis | 95 |
| abstract_inverted_index.Warm-Start | 72 |
| abstract_inverted_index.acceptance | 3 |
| abstract_inverted_index.approaches | 50 |
| abstract_inverted_index.conditions | 63 |
| abstract_inverted_index.detection, | 19 |
| abstract_inverted_index.in-vehicle | 103 |
| abstract_inverted_index.increasing | 92 |
| abstract_inverted_index.interfaces | 104 |
| abstract_inverted_index.introduces | 43 |
| abstract_inverted_index.OptiCarVis, | 44 |
| abstract_inverted_index.Traditional | 30 |
| abstract_inverted_index.acceptance, | 86 |
| abstract_inverted_index.experiences | 108 |
| abstract_inverted_index.facilitates | 96 |
| abstract_inverted_index.prediction, | 20 |
| abstract_inverted_index.unsuitable, | 35 |
| abstract_inverted_index.OptiCarVis's | 80 |
| abstract_inverted_index.Optimization | 54 |
| abstract_inverted_index.challenging. | 29 |
| abstract_inverted_index.demonstrates | 79 |
| abstract_inverted_index.establishing | 24 |
| abstract_inverted_index.evaluations. | 40 |
| abstract_inverted_index.exploration, | 101 |
| abstract_inverted_index.comprehensive | 98 |
| abstract_inverted_index.significantly | 83 |
| abstract_inverted_index.understanding | 7, 16 |
| abstract_inverted_index.applicability. | 111 |
| abstract_inverted_index.predictability | 90 |
| abstract_inverted_index.visualizations | 11 |
| abstract_inverted_index.Multi-Objective | 52 |
| abstract_inverted_index.user-customized | 68 |
| abstract_inverted_index.visualizations. | 60 |
| abstract_inverted_index.functionalities, | 23 |
| abstract_inverted_index.Human-in-the-Loop | 48 |
| abstract_inverted_index.resource-intensive | 38 |
| abstract_inverted_index."one-size-fits-all" | 31 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.90397606 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |