Optimal Aggregation of LLM and PRM Signals for Efficient Test-Time Scaling Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2510.13918
Process reward models (PRMs) are a cornerstone of test-time scaling (TTS), designed to verify and select the best responses from large language models (LLMs). However, this promise is challenged by recent benchmarks where simple majority voting, which ignores PRM signals, occasionally outperforms standard PRM-based selection. This raises a critical question: How can we effectively utilize verification signals from PRMs for TTS? To address this, we start by developing a theoretical framework for optimally combining signals from both the LLM and the PRM. Our framework reveals that the optimal strategy is a weighted aggregation of responses, a strategy whose effectiveness hinges on estimating weights that capture the complex interplay between the models. Based on our theoretical results, we empirically show that these optimal weighting functions differ significantly across LLM-PRM pairs and, notably, often assign substantial negative weights. Motivated by these insights, we propose efficient pre-computation methods to calibrate these weighting functions. Extensive experiments across 5 LLMs and 7 PRMs demonstrate that our calibration method significantly boosts the TTS efficiency, surpassing the performance of vanilla weighted majority voting while using only $21.3\%$ of the computation. Ultimately, our work demonstrates that investing in a more intelligent aggregation strategy can be a more convincing path to performance gains than simply scaling test-time computation.
Related Topics
- Type
- preprint
- Landing Page
- http://arxiv.org/abs/2510.13918
- https://arxiv.org/pdf/2510.13918
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4416145571
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416145571Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2510.13918Digital Object Identifier
- Title
-
Optimal Aggregation of LLM and PRM Signals for Efficient Test-Time ScalingWork title
- Type
-
preprintOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-10-15Full publication date if available
- Authors
-
Yanli Wang, Xiufeng Han, Ke Xu, Haohan WangList of authors in order
- Landing page
-
https://arxiv.org/abs/2510.13918Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2510.13918Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2510.13918Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4416145571 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2510.13918 |
| ids.doi | https://doi.org/10.48550/arxiv.2510.13918 |
| ids.openalex | https://openalex.org/W4416145571 |
| fwci | |
| type | preprint |
| title | Optimal Aggregation of LLM and PRM Signals for Efficient Test-Time Scaling |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | |
| locations[0].id | pmh:oai:arXiv.org:2510.13918 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2510.13918 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2510.13918 |
| locations[1].id | doi:10.48550/arxiv.2510.13918 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2510.13918 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5089462798 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6160-3476 |
| authorships[0].author.display_name | Yanli Wang |
| authorships[0].author_position | middle |
| authorships[0].raw_author_name | Wang, Yanli |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5028170495 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8053-793X |
| authorships[1].author.display_name | Xiufeng Han |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Han, Xiaoyu |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5077016919 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-8402-7432 |
| authorships[2].author.display_name | Ke Xu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Xu, Kaidi |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5101892837 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1826-4069 |
| authorships[3].author.display_name | Haohan Wang |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Wang, Haohan |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2510.13918 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-18T00:00:00 |
| display_name | Optimal Aggregation of LLM and PRM Signals for Efficient Test-Time Scaling |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-28T06:20:18.130592 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2510.13918 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2510.13918 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2510.13918 |
| primary_location.id | pmh:oai:arXiv.org:2510.13918 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2510.13918 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2510.13918 |
| publication_date | 2025-10-15 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.5 | 153 |
| abstract_inverted_index.7 | 156 |
| abstract_inverted_index.a | 5, 47, 68, 90, 95, 190, 197 |
| abstract_inverted_index.To | 61 |
| abstract_inverted_index.be | 196 |
| abstract_inverted_index.by | 29, 66, 137 |
| abstract_inverted_index.in | 189 |
| abstract_inverted_index.is | 27, 89 |
| abstract_inverted_index.of | 7, 93, 171, 180 |
| abstract_inverted_index.on | 100, 112 |
| abstract_inverted_index.to | 12, 145, 201 |
| abstract_inverted_index.we | 52, 64, 116, 140 |
| abstract_inverted_index.How | 50 |
| abstract_inverted_index.LLM | 78 |
| abstract_inverted_index.Our | 82 |
| abstract_inverted_index.PRM | 38 |
| abstract_inverted_index.TTS | 166 |
| abstract_inverted_index.and | 14, 79, 155 |
| abstract_inverted_index.are | 4 |
| abstract_inverted_index.can | 51, 195 |
| abstract_inverted_index.for | 59, 71 |
| abstract_inverted_index.our | 113, 160, 184 |
| abstract_inverted_index.the | 16, 77, 80, 86, 105, 109, 165, 169, 181 |
| abstract_inverted_index.LLMs | 154 |
| abstract_inverted_index.PRM. | 81 |
| abstract_inverted_index.PRMs | 58, 157 |
| abstract_inverted_index.TTS? | 60 |
| abstract_inverted_index.This | 45 |
| abstract_inverted_index.and, | 129 |
| abstract_inverted_index.best | 17 |
| abstract_inverted_index.both | 76 |
| abstract_inverted_index.from | 19, 57, 75 |
| abstract_inverted_index.more | 191, 198 |
| abstract_inverted_index.only | 178 |
| abstract_inverted_index.path | 200 |
| abstract_inverted_index.show | 118 |
| abstract_inverted_index.than | 204 |
| abstract_inverted_index.that | 85, 103, 119, 159, 187 |
| abstract_inverted_index.this | 25 |
| abstract_inverted_index.work | 185 |
| abstract_inverted_index.Based | 111 |
| abstract_inverted_index.gains | 203 |
| abstract_inverted_index.large | 20 |
| abstract_inverted_index.often | 131 |
| abstract_inverted_index.pairs | 128 |
| abstract_inverted_index.start | 65 |
| abstract_inverted_index.these | 120, 138, 147 |
| abstract_inverted_index.this, | 63 |
| abstract_inverted_index.using | 177 |
| abstract_inverted_index.where | 32 |
| abstract_inverted_index.which | 36 |
| abstract_inverted_index.while | 176 |
| abstract_inverted_index.whose | 97 |
| abstract_inverted_index.(PRMs) | 3 |
| abstract_inverted_index.(TTS), | 10 |
| abstract_inverted_index.across | 126, 152 |
| abstract_inverted_index.assign | 132 |
| abstract_inverted_index.boosts | 164 |
| abstract_inverted_index.differ | 124 |
| abstract_inverted_index.hinges | 99 |
| abstract_inverted_index.method | 162 |
| abstract_inverted_index.models | 2, 22 |
| abstract_inverted_index.raises | 46 |
| abstract_inverted_index.recent | 30 |
| abstract_inverted_index.reward | 1 |
| abstract_inverted_index.select | 15 |
| abstract_inverted_index.simple | 33 |
| abstract_inverted_index.simply | 205 |
| abstract_inverted_index.verify | 13 |
| abstract_inverted_index.voting | 175 |
| abstract_inverted_index.(LLMs). | 23 |
| abstract_inverted_index.LLM-PRM | 127 |
| abstract_inverted_index.Process | 0 |
| abstract_inverted_index.address | 62 |
| abstract_inverted_index.between | 108 |
| abstract_inverted_index.capture | 104 |
| abstract_inverted_index.complex | 106 |
| abstract_inverted_index.ignores | 37 |
| abstract_inverted_index.methods | 144 |
| abstract_inverted_index.models. | 110 |
| abstract_inverted_index.optimal | 87, 121 |
| abstract_inverted_index.promise | 26 |
| abstract_inverted_index.propose | 141 |
| abstract_inverted_index.reveals | 84 |
| abstract_inverted_index.scaling | 9, 206 |
| abstract_inverted_index.signals | 56, 74 |
| abstract_inverted_index.utilize | 54 |
| abstract_inverted_index.vanilla | 172 |
| abstract_inverted_index.voting, | 35 |
| abstract_inverted_index.weights | 102 |
| abstract_inverted_index.$21.3\%$ | 179 |
| abstract_inverted_index.However, | 24 |
| abstract_inverted_index.critical | 48 |
| abstract_inverted_index.designed | 11 |
| abstract_inverted_index.language | 21 |
| abstract_inverted_index.majority | 34, 174 |
| abstract_inverted_index.negative | 134 |
| abstract_inverted_index.notably, | 130 |
| abstract_inverted_index.results, | 115 |
| abstract_inverted_index.signals, | 39 |
| abstract_inverted_index.standard | 42 |
| abstract_inverted_index.strategy | 88, 96, 194 |
| abstract_inverted_index.weighted | 91, 173 |
| abstract_inverted_index.weights. | 135 |
| abstract_inverted_index.Extensive | 150 |
| abstract_inverted_index.Motivated | 136 |
| abstract_inverted_index.PRM-based | 43 |
| abstract_inverted_index.calibrate | 146 |
| abstract_inverted_index.combining | 73 |
| abstract_inverted_index.efficient | 142 |
| abstract_inverted_index.framework | 70, 83 |
| abstract_inverted_index.functions | 123 |
| abstract_inverted_index.insights, | 139 |
| abstract_inverted_index.interplay | 107 |
| abstract_inverted_index.investing | 188 |
| abstract_inverted_index.optimally | 72 |
| abstract_inverted_index.question: | 49 |
| abstract_inverted_index.responses | 18 |
| abstract_inverted_index.test-time | 8, 207 |
| abstract_inverted_index.weighting | 122, 148 |
| abstract_inverted_index.benchmarks | 31 |
| abstract_inverted_index.challenged | 28 |
| abstract_inverted_index.convincing | 199 |
| abstract_inverted_index.developing | 67 |
| abstract_inverted_index.estimating | 101 |
| abstract_inverted_index.functions. | 149 |
| abstract_inverted_index.responses, | 94 |
| abstract_inverted_index.selection. | 44 |
| abstract_inverted_index.surpassing | 168 |
| abstract_inverted_index.Ultimately, | 183 |
| abstract_inverted_index.aggregation | 92, 193 |
| abstract_inverted_index.calibration | 161 |
| abstract_inverted_index.cornerstone | 6 |
| abstract_inverted_index.demonstrate | 158 |
| abstract_inverted_index.effectively | 53 |
| abstract_inverted_index.efficiency, | 167 |
| abstract_inverted_index.empirically | 117 |
| abstract_inverted_index.experiments | 151 |
| abstract_inverted_index.intelligent | 192 |
| abstract_inverted_index.outperforms | 41 |
| abstract_inverted_index.performance | 170, 202 |
| abstract_inverted_index.substantial | 133 |
| abstract_inverted_index.theoretical | 69, 114 |
| abstract_inverted_index.computation. | 182, 208 |
| abstract_inverted_index.demonstrates | 186 |
| abstract_inverted_index.occasionally | 40 |
| abstract_inverted_index.verification | 55 |
| abstract_inverted_index.effectiveness | 98 |
| abstract_inverted_index.significantly | 125, 163 |
| abstract_inverted_index.pre-computation | 143 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |