Optimal Data Selection Rule Mining for Transformer Condition Assessment Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.1109/access.2021.3126763
The condition of the transformer can be accurately assessed based on dissolved gas online monitoring and analysis technology. With the widespread use of Dissolved Gas Analysis (DGA) technology, a large amount of dissolved gas time series data is obtained and forms DGA big data, which brings challenges to the data selection process of traditional condition assessment methods. Inaccurate results might be generated by selecting excessive or insufficient data from a long-span dissolved gas time series. The shorter dissolved gas time series fails to fully characterize the operation law of transformers, and the longer dissolved gas time series contains redundant information that results in inaccurate analysis models and excessive calculation consumption. This paper attempts to mine the optimal data selection rule of long-span dissolved gas time series for more accurate and efficient analysis. In this paper, C-C method was employed to calculate the phase space parameters of the time series. By analyzing the convergence of the correlation integral, the boundary conditions that maintain the time series phase space stability were revealed, and so was the relationship between the optimal length and the embedding dimension. The real cases show that the optimal data set provides the same accuracy and significantly improves the computation speed by 113.54 times. The optimal data selection rule eliminates redundant information in the long-span dissolved gas time series and retains the “optimal data”, which not only preserves the characteristics of the original data, but also improves the computation speed of transformer condition assessment.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/access.2021.3126763
- OA Status
- gold
- Cited By
- 8
- References
- 40
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3212592316
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3212592316Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/access.2021.3126763Digital Object Identifier
- Title
-
Optimal Data Selection Rule Mining for Transformer Condition AssessmentWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-01-01Full publication date if available
- Authors
-
Peng Zhang, Bo Qi, Mengyu Shao, Chengrong Li, Zhihai Rong, Jinxiang Chen, Hongbin WangList of authors in order
- Landing page
-
https://doi.org/10.1109/access.2021.3126763Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1109/access.2021.3126763Direct OA link when available
- Concepts
-
Dissolved gas analysis, Computation, Time series, Transformer, Computer science, Data mining, Series (stratigraphy), Algorithm, Engineering, Machine learning, Voltage, Biology, Paleontology, Transformer oil, Electrical engineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
8Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 5, 2022: 1Per-year citation counts (last 5 years)
- References (count)
-
40Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3212592316 |
|---|---|
| doi | https://doi.org/10.1109/access.2021.3126763 |
| ids.doi | https://doi.org/10.1109/access.2021.3126763 |
| ids.mag | 3212592316 |
| ids.openalex | https://openalex.org/W3212592316 |
| fwci | 0.55008854 |
| type | article |
| title | Optimal Data Selection Rule Mining for Transformer Condition Assessment |
| awards[0].id | https://openalex.org/G8729709848 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | U1866603 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | |
| biblio.volume | 9 |
| biblio.last_page | 156972 |
| biblio.first_page | 156962 |
| topics[0].id | https://openalex.org/T11343 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9994999766349792 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Power Transformer Diagnostics and Insulation |
| topics[1].id | https://openalex.org/T11052 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9933000206947327 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Energy Load and Power Forecasting |
| topics[2].id | https://openalex.org/T11326 |
| topics[2].field.id | https://openalex.org/fields/18 |
| topics[2].field.display_name | Decision Sciences |
| topics[2].score | 0.9815999865531921 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1803 |
| topics[2].subfield.display_name | Management Science and Operations Research |
| topics[2].display_name | Stock Market Forecasting Methods |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| is_xpac | False |
| apc_list.value | 1850 |
| apc_list.currency | USD |
| apc_list.value_usd | 1850 |
| apc_paid.value | 1850 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1850 |
| concepts[0].id | https://openalex.org/C81818771 |
| concepts[0].level | 5 |
| concepts[0].score | 0.7576459050178528 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q787515 |
| concepts[0].display_name | Dissolved gas analysis |
| concepts[1].id | https://openalex.org/C45374587 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6387149095535278 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q12525525 |
| concepts[1].display_name | Computation |
| concepts[2].id | https://openalex.org/C151406439 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5651872158050537 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q186588 |
| concepts[2].display_name | Time series |
| concepts[3].id | https://openalex.org/C66322947 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5623499751091003 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11658 |
| concepts[3].display_name | Transformer |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.5355073809623718 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C124101348 |
| concepts[5].level | 1 |
| concepts[5].score | 0.42356258630752563 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[5].display_name | Data mining |
| concepts[6].id | https://openalex.org/C143724316 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4215220510959625 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q312468 |
| concepts[6].display_name | Series (stratigraphy) |
| concepts[7].id | https://openalex.org/C11413529 |
| concepts[7].level | 1 |
| concepts[7].score | 0.34849119186401367 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[7].display_name | Algorithm |
| concepts[8].id | https://openalex.org/C127413603 |
| concepts[8].level | 0 |
| concepts[8].score | 0.18643200397491455 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[8].display_name | Engineering |
| concepts[9].id | https://openalex.org/C119857082 |
| concepts[9].level | 1 |
| concepts[9].score | 0.16239845752716064 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[9].display_name | Machine learning |
| concepts[10].id | https://openalex.org/C165801399 |
| concepts[10].level | 2 |
| concepts[10].score | 0.15532904863357544 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q25428 |
| concepts[10].display_name | Voltage |
| concepts[11].id | https://openalex.org/C86803240 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[11].display_name | Biology |
| concepts[12].id | https://openalex.org/C151730666 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[12].display_name | Paleontology |
| concepts[13].id | https://openalex.org/C181335627 |
| concepts[13].level | 4 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q901418 |
| concepts[13].display_name | Transformer oil |
| concepts[14].id | https://openalex.org/C119599485 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q43035 |
| concepts[14].display_name | Electrical engineering |
| keywords[0].id | https://openalex.org/keywords/dissolved-gas-analysis |
| keywords[0].score | 0.7576459050178528 |
| keywords[0].display_name | Dissolved gas analysis |
| keywords[1].id | https://openalex.org/keywords/computation |
| keywords[1].score | 0.6387149095535278 |
| keywords[1].display_name | Computation |
| keywords[2].id | https://openalex.org/keywords/time-series |
| keywords[2].score | 0.5651872158050537 |
| keywords[2].display_name | Time series |
| keywords[3].id | https://openalex.org/keywords/transformer |
| keywords[3].score | 0.5623499751091003 |
| keywords[3].display_name | Transformer |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.5355073809623718 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/data-mining |
| keywords[5].score | 0.42356258630752563 |
| keywords[5].display_name | Data mining |
| keywords[6].id | https://openalex.org/keywords/series |
| keywords[6].score | 0.4215220510959625 |
| keywords[6].display_name | Series (stratigraphy) |
| keywords[7].id | https://openalex.org/keywords/algorithm |
| keywords[7].score | 0.34849119186401367 |
| keywords[7].display_name | Algorithm |
| keywords[8].id | https://openalex.org/keywords/engineering |
| keywords[8].score | 0.18643200397491455 |
| keywords[8].display_name | Engineering |
| keywords[9].id | https://openalex.org/keywords/machine-learning |
| keywords[9].score | 0.16239845752716064 |
| keywords[9].display_name | Machine learning |
| keywords[10].id | https://openalex.org/keywords/voltage |
| keywords[10].score | 0.15532904863357544 |
| keywords[10].display_name | Voltage |
| language | en |
| locations[0].id | doi:10.1109/access.2021.3126763 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2485537415 |
| locations[0].source.issn | 2169-3536 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2169-3536 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Access |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Access |
| locations[0].landing_page_url | https://doi.org/10.1109/access.2021.3126763 |
| locations[1].id | pmh:oai:doaj.org/article:16e032e3498142589af0e1bde762e5de |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IEEE Access, Vol 9, Pp 156962-156972 (2021) |
| locations[1].landing_page_url | https://doaj.org/article/16e032e3498142589af0e1bde762e5de |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5100364229 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2213-8601 |
| authorships[0].author.display_name | Peng Zhang |
| authorships[0].countries | CN, US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210142152 |
| authorships[0].affiliations[0].raw_affiliation_string | ORCiD |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I153473198 |
| authorships[0].affiliations[1].raw_affiliation_string | State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing, China |
| authorships[0].institutions[0].id | https://openalex.org/I153473198 |
| authorships[0].institutions[0].ror | https://ror.org/04qr5t414 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I153473198 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | North China Electric Power University |
| authorships[0].institutions[1].id | https://openalex.org/I4210142152 |
| authorships[0].institutions[1].ror | https://ror.org/04fa4r544 |
| authorships[0].institutions[1].type | nonprofit |
| authorships[0].institutions[1].lineage | https://openalex.org/I4210142152 |
| authorships[0].institutions[1].country_code | US |
| authorships[0].institutions[1].display_name | ORCID |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Peng Zhang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | ORCiD, State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing, China |
| authorships[1].author.id | https://openalex.org/A5000972854 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8001-5824 |
| authorships[1].author.display_name | Bo Qi |
| authorships[1].countries | CN, US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210142152 |
| authorships[1].affiliations[0].raw_affiliation_string | ORCiD |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I153473198 |
| authorships[1].affiliations[1].raw_affiliation_string | State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing, China |
| authorships[1].institutions[0].id | https://openalex.org/I153473198 |
| authorships[1].institutions[0].ror | https://ror.org/04qr5t414 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I153473198 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | North China Electric Power University |
| authorships[1].institutions[1].id | https://openalex.org/I4210142152 |
| authorships[1].institutions[1].ror | https://ror.org/04fa4r544 |
| authorships[1].institutions[1].type | nonprofit |
| authorships[1].institutions[1].lineage | https://openalex.org/I4210142152 |
| authorships[1].institutions[1].country_code | US |
| authorships[1].institutions[1].display_name | ORCID |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Bo Qi |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | ORCiD, State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing, China |
| authorships[2].author.id | https://openalex.org/A5057229023 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Mengyu Shao |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I153473198 |
| authorships[2].affiliations[0].raw_affiliation_string | State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing, China |
| authorships[2].institutions[0].id | https://openalex.org/I153473198 |
| authorships[2].institutions[0].ror | https://ror.org/04qr5t414 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I153473198 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | North China Electric Power University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Mengyu Shao |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing, China |
| authorships[3].author.id | https://openalex.org/A5020728310 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1080-4366 |
| authorships[3].author.display_name | Chengrong Li |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I153473198 |
| authorships[3].affiliations[0].raw_affiliation_string | State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing, China |
| authorships[3].institutions[0].id | https://openalex.org/I153473198 |
| authorships[3].institutions[0].ror | https://ror.org/04qr5t414 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I153473198 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | North China Electric Power University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Chengrong Li |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing, China |
| authorships[4].author.id | https://openalex.org/A5082080991 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-2009-1053 |
| authorships[4].author.display_name | Zhihai Rong |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I153473198 |
| authorships[4].affiliations[0].raw_affiliation_string | State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing, China |
| authorships[4].institutions[0].id | https://openalex.org/I153473198 |
| authorships[4].institutions[0].ror | https://ror.org/04qr5t414 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I153473198 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | North China Electric Power University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Zhihai Rong |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing, China |
| authorships[5].author.id | https://openalex.org/A5023210920 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-0241-7905 |
| authorships[5].author.display_name | Jinxiang Chen |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210111970 |
| authorships[5].affiliations[0].raw_affiliation_string | State Grid Fujian Electric Power Company Ltd., Fuzhou, China |
| authorships[5].institutions[0].id | https://openalex.org/I4210111970 |
| authorships[5].institutions[0].ror | https://ror.org/0233jyt67 |
| authorships[5].institutions[0].type | facility |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210111970 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Fujian Electric Power Survey & Design Institute |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Jinxiang Chen |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | State Grid Fujian Electric Power Company Ltd., Fuzhou, China |
| authorships[6].author.id | https://openalex.org/A5100332091 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-9828-9054 |
| authorships[6].author.display_name | Hongbin Wang |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I74872605 |
| authorships[6].affiliations[0].raw_affiliation_string | Electric Power Research Institute of Guangdong Power Grid Company Ltd., Guangzhou, China |
| authorships[6].institutions[0].id | https://openalex.org/I74872605 |
| authorships[6].institutions[0].ror | https://ror.org/03hkh9419 |
| authorships[6].institutions[0].type | company |
| authorships[6].institutions[0].lineage | https://openalex.org/I74872605 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | China Southern Power Grid (China) |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Hongbin Wang |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Electric Power Research Institute of Guangdong Power Grid Company Ltd., Guangzhou, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1109/access.2021.3126763 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Optimal Data Selection Rule Mining for Transformer Condition Assessment |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11343 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9994999766349792 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Power Transformer Diagnostics and Insulation |
| related_works | https://openalex.org/W2150798635, https://openalex.org/W2080650820, https://openalex.org/W1964982224, https://openalex.org/W2150451301, https://openalex.org/W2390480142, https://openalex.org/W2354329565, https://openalex.org/W2151118505, https://openalex.org/W2386131991, https://openalex.org/W2123336756, https://openalex.org/W2365729238 |
| cited_by_count | 8 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 5 |
| counts_by_year[2].year | 2022 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1109/access.2021.3126763 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2485537415 |
| best_oa_location.source.issn | 2169-3536 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2169-3536 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Access |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Access |
| best_oa_location.landing_page_url | https://doi.org/10.1109/access.2021.3126763 |
| primary_location.id | doi:10.1109/access.2021.3126763 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2485537415 |
| primary_location.source.issn | 2169-3536 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2169-3536 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Access |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Access |
| primary_location.landing_page_url | https://doi.org/10.1109/access.2021.3126763 |
| publication_date | 2021-01-01 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2029401646, https://openalex.org/W2055617798, https://openalex.org/W2129624644, https://openalex.org/W2621901965, https://openalex.org/W2366701965, https://openalex.org/W2040704490, https://openalex.org/W1549386224, https://openalex.org/W2152254020, https://openalex.org/W2950444251, https://openalex.org/W2901897915, https://openalex.org/W2102264602, https://openalex.org/W3024720112, https://openalex.org/W2117678665, https://openalex.org/W3113032133, https://openalex.org/W3013444895, https://openalex.org/W2811301190, https://openalex.org/W2951836720, https://openalex.org/W1554132173, https://openalex.org/W2141394518, https://openalex.org/W1979717113, https://openalex.org/W2021653559, https://openalex.org/W2104616372, https://openalex.org/W2127132607, https://openalex.org/W1998775978, https://openalex.org/W2113244375, https://openalex.org/W2029291989, https://openalex.org/W2145487113, https://openalex.org/W2896734877, https://openalex.org/W2111944939, https://openalex.org/W2917190209, https://openalex.org/W2043032216, https://openalex.org/W2141342378, https://openalex.org/W2038623285, https://openalex.org/W2143681686, https://openalex.org/W1507259579, https://openalex.org/W2145007766, https://openalex.org/W2134383471, https://openalex.org/W2766916290, https://openalex.org/W2135818760, https://openalex.org/W2118756059 |
| referenced_works_count | 40 |
| abstract_inverted_index.a | 28, 69 |
| abstract_inverted_index.By | 149 |
| abstract_inverted_index.In | 132 |
| abstract_inverted_index.be | 6, 60 |
| abstract_inverted_index.by | 62, 202 |
| abstract_inverted_index.in | 102, 213 |
| abstract_inverted_index.is | 37 |
| abstract_inverted_index.of | 2, 22, 31, 52, 88, 120, 145, 153, 231, 241 |
| abstract_inverted_index.on | 10 |
| abstract_inverted_index.or | 65 |
| abstract_inverted_index.so | 171 |
| abstract_inverted_index.to | 47, 82, 113, 139 |
| abstract_inverted_index.C-C | 135 |
| abstract_inverted_index.DGA | 41 |
| abstract_inverted_index.Gas | 24 |
| abstract_inverted_index.The | 0, 75, 183, 205 |
| abstract_inverted_index.and | 15, 39, 90, 106, 129, 170, 179, 196, 220 |
| abstract_inverted_index.big | 42 |
| abstract_inverted_index.but | 235 |
| abstract_inverted_index.can | 5 |
| abstract_inverted_index.for | 126 |
| abstract_inverted_index.gas | 12, 33, 72, 78, 94, 123, 217 |
| abstract_inverted_index.law | 87 |
| abstract_inverted_index.not | 226 |
| abstract_inverted_index.set | 191 |
| abstract_inverted_index.the | 3, 19, 48, 85, 91, 115, 141, 146, 151, 154, 157, 162, 173, 176, 180, 188, 193, 199, 214, 222, 229, 232, 238 |
| abstract_inverted_index.use | 21 |
| abstract_inverted_index.was | 137, 172 |
| abstract_inverted_index.This | 110 |
| abstract_inverted_index.With | 18 |
| abstract_inverted_index.also | 236 |
| abstract_inverted_index.data | 36, 49, 67, 117, 190, 207 |
| abstract_inverted_index.from | 68 |
| abstract_inverted_index.mine | 114 |
| abstract_inverted_index.more | 127 |
| abstract_inverted_index.only | 227 |
| abstract_inverted_index.real | 184 |
| abstract_inverted_index.rule | 119, 209 |
| abstract_inverted_index.same | 194 |
| abstract_inverted_index.show | 186 |
| abstract_inverted_index.that | 100, 160, 187 |
| abstract_inverted_index.this | 133 |
| abstract_inverted_index.time | 34, 73, 79, 95, 124, 147, 163, 218 |
| abstract_inverted_index.were | 168 |
| abstract_inverted_index.(DGA) | 26 |
| abstract_inverted_index.based | 9 |
| abstract_inverted_index.cases | 185 |
| abstract_inverted_index.data, | 43, 234 |
| abstract_inverted_index.fails | 81 |
| abstract_inverted_index.forms | 40 |
| abstract_inverted_index.fully | 83 |
| abstract_inverted_index.large | 29 |
| abstract_inverted_index.might | 59 |
| abstract_inverted_index.paper | 111 |
| abstract_inverted_index.phase | 142, 165 |
| abstract_inverted_index.space | 143, 166 |
| abstract_inverted_index.speed | 201, 240 |
| abstract_inverted_index.which | 44, 225 |
| abstract_inverted_index.113.54 | 203 |
| abstract_inverted_index.amount | 30 |
| abstract_inverted_index.brings | 45 |
| abstract_inverted_index.length | 178 |
| abstract_inverted_index.longer | 92 |
| abstract_inverted_index.method | 136 |
| abstract_inverted_index.models | 105 |
| abstract_inverted_index.online | 13 |
| abstract_inverted_index.paper, | 134 |
| abstract_inverted_index.series | 35, 80, 96, 125, 164, 219 |
| abstract_inverted_index.times. | 204 |
| abstract_inverted_index.between | 175 |
| abstract_inverted_index.optimal | 116, 177, 189, 206 |
| abstract_inverted_index.process | 51 |
| abstract_inverted_index.results | 58, 101 |
| abstract_inverted_index.retains | 221 |
| abstract_inverted_index.series. | 74, 148 |
| abstract_inverted_index.shorter | 76 |
| abstract_inverted_index.Analysis | 25 |
| abstract_inverted_index.accuracy | 195 |
| abstract_inverted_index.accurate | 128 |
| abstract_inverted_index.analysis | 16, 104 |
| abstract_inverted_index.assessed | 8 |
| abstract_inverted_index.attempts | 112 |
| abstract_inverted_index.boundary | 158 |
| abstract_inverted_index.contains | 97 |
| abstract_inverted_index.employed | 138 |
| abstract_inverted_index.improves | 198, 237 |
| abstract_inverted_index.maintain | 161 |
| abstract_inverted_index.methods. | 56 |
| abstract_inverted_index.obtained | 38 |
| abstract_inverted_index.original | 233 |
| abstract_inverted_index.provides | 192 |
| abstract_inverted_index.Dissolved | 23 |
| abstract_inverted_index.analysis. | 131 |
| abstract_inverted_index.analyzing | 150 |
| abstract_inverted_index.calculate | 140 |
| abstract_inverted_index.condition | 1, 54, 243 |
| abstract_inverted_index.dissolved | 11, 32, 71, 77, 93, 122, 216 |
| abstract_inverted_index.efficient | 130 |
| abstract_inverted_index.embedding | 181 |
| abstract_inverted_index.excessive | 64, 107 |
| abstract_inverted_index.generated | 61 |
| abstract_inverted_index.integral, | 156 |
| abstract_inverted_index.long-span | 70, 121, 215 |
| abstract_inverted_index.operation | 86 |
| abstract_inverted_index.preserves | 228 |
| abstract_inverted_index.redundant | 98, 211 |
| abstract_inverted_index.revealed, | 169 |
| abstract_inverted_index.selecting | 63 |
| abstract_inverted_index.selection | 50, 118, 208 |
| abstract_inverted_index.stability | 167 |
| abstract_inverted_index.Inaccurate | 57 |
| abstract_inverted_index.accurately | 7 |
| abstract_inverted_index.assessment | 55 |
| abstract_inverted_index.challenges | 46 |
| abstract_inverted_index.conditions | 159 |
| abstract_inverted_index.dimension. | 182 |
| abstract_inverted_index.eliminates | 210 |
| abstract_inverted_index.inaccurate | 103 |
| abstract_inverted_index.monitoring | 14 |
| abstract_inverted_index.parameters | 144 |
| abstract_inverted_index.widespread | 20 |
| abstract_inverted_index.assessment. | 244 |
| abstract_inverted_index.calculation | 108 |
| abstract_inverted_index.computation | 200, 239 |
| abstract_inverted_index.convergence | 152 |
| abstract_inverted_index.correlation | 155 |
| abstract_inverted_index.information | 99, 212 |
| abstract_inverted_index.technology, | 27 |
| abstract_inverted_index.technology. | 17 |
| abstract_inverted_index.traditional | 53 |
| abstract_inverted_index.transformer | 4, 242 |
| abstract_inverted_index.characterize | 84 |
| abstract_inverted_index.consumption. | 109 |
| abstract_inverted_index.insufficient | 66 |
| abstract_inverted_index.relationship | 174 |
| abstract_inverted_index.data”, | 224 |
| abstract_inverted_index.significantly | 197 |
| abstract_inverted_index.transformers, | 89 |
| abstract_inverted_index.“optimal | 223 |
| abstract_inverted_index.characteristics | 230 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile.value | 0.68544435 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |