Optimal Medical Image Size Reduction Model Creation Using Recurrent Neural Network and GenPSOWVQ Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1155/2022/2354866
Medical diagnosis is always a time and a sensitive approach to proper medical treatment. Automation systems have been developed to improve these issues. In the process of automation, images are processed and sent to the remote brain for processing and decision making. It is noted that the image is written for compaction to reduce processing and computational costs. Images require large storage and transmission resources to perform their operations. A good strategy for pictures compression can help minimize these requirements. The question of compressing data on accuracy is always a challenge. Therefore, to optimize imaging, it is necessary to reduce inconsistencies in medical imaging. So this document introduces a new image compression scheme called the GenPSOWVQ method that uses a recurrent neural network with wavelet VQ. The codebook is built using a combination of fragments and genetic algorithms. The newly developed image compression model attains precise compression while maintaining image accuracy with lower computational costs when encoding clinical images. The proposed method was tested using real-time medical imaging using PSNR, MSE, SSIM, NMSE, SNR, and CR indicators. Experimental results show that the proposed GenPSOWVQ method yields higher PSNR SSIMM values for a given compression ratio than the existing methods. In addition, the proposed GenPSOWVQ method yields lower values of MSE, RMSE, and SNR for a given compression ratio than the existing methods.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1155/2022/2354866
- https://downloads.hindawi.com/journals/jhe/2022/2354866.pdf
- OA Status
- hybrid
- Cited By
- 77
- References
- 35
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4214605467
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4214605467Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1155/2022/2354866Digital Object Identifier
- Title
-
Optimal Medical Image Size Reduction Model Creation Using Recurrent Neural Network and GenPSOWVQWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-02-26Full publication date if available
- Authors
-
Chethana Sridhar, Piyush Kumar Pareek, R. Kalidoss, Sajjad Shaukat Jamal, Prashant Kumar Shukla, Stephen Jeswinde NuagahList of authors in order
- Landing page
-
https://doi.org/10.1155/2022/2354866Publisher landing page
- PDF URL
-
https://downloads.hindawi.com/journals/jhe/2022/2354866.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://downloads.hindawi.com/journals/jhe/2022/2354866.pdfDirect OA link when available
- Concepts
-
Computer science, Image compression, Codebook, Artificial intelligence, Automation, Data compression, Reduction (mathematics), Artificial neural network, Encoding (memory), Medical imaging, Peak signal-to-noise ratio, Compression ratio, Data mining, Image processing, Computer vision, Image (mathematics), Mathematics, Engineering, Internal combustion engine, Mechanical engineering, Automotive engineering, GeometryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
77Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 6, 2024: 13, 2023: 23, 2022: 35Per-year citation counts (last 5 years)
- References (count)
-
35Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4214605467 |
|---|---|
| doi | https://doi.org/10.1155/2022/2354866 |
| ids.doi | https://doi.org/10.1155/2022/2354866 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/35256896 |
| ids.openalex | https://openalex.org/W4214605467 |
| fwci | 10.3614678 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D000465 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Algorithms |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D044962 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Data Compression |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D003952 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Diagnostic Imaging |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D006801 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Humans |
| mesh[4].qualifier_ui | Q000379 |
| mesh[4].descriptor_ui | D007091 |
| mesh[4].is_major_topic | True |
| mesh[4].qualifier_name | methods |
| mesh[4].descriptor_name | Image Processing, Computer-Assisted |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D016571 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Neural Networks, Computer |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D000465 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Algorithms |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D044962 |
| mesh[7].is_major_topic | True |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Data Compression |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D003952 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Diagnostic Imaging |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D006801 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Humans |
| mesh[10].qualifier_ui | Q000379 |
| mesh[10].descriptor_ui | D007091 |
| mesh[10].is_major_topic | True |
| mesh[10].qualifier_name | methods |
| mesh[10].descriptor_name | Image Processing, Computer-Assisted |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D016571 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Neural Networks, Computer |
| type | article |
| title | Optimal Medical Image Size Reduction Model Creation Using Recurrent Neural Network and GenPSOWVQ |
| awards[0].id | https://openalex.org/G7594282087 |
| awards[0].funder_id | https://openalex.org/F4320324433 |
| awards[0].display_name | |
| awards[0].funder_award_id | R.G.P. 2/48/42 |
| awards[0].funder_display_name | King Khalid University |
| biblio.issue | |
| biblio.volume | 2022 |
| biblio.last_page | 8 |
| biblio.first_page | 1 |
| topics[0].id | https://openalex.org/T12702 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 0.9990000128746033 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2808 |
| topics[0].subfield.display_name | Neurology |
| topics[0].display_name | Brain Tumor Detection and Classification |
| topics[1].id | https://openalex.org/T10052 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9958000183105469 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Medical Image Segmentation Techniques |
| topics[2].id | https://openalex.org/T10688 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9955999851226807 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Image and Signal Denoising Methods |
| funders[0].id | https://openalex.org/F4320324433 |
| funders[0].ror | https://ror.org/052kwzs30 |
| funders[0].display_name | King Khalid University |
| is_xpac | False |
| apc_list.value | 2100 |
| apc_list.currency | USD |
| apc_list.value_usd | 2100 |
| apc_paid.value | 2100 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2100 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7475126385688782 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C13481523 |
| concepts[1].level | 4 |
| concepts[1].score | 0.6916027069091797 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q412438 |
| concepts[1].display_name | Image compression |
| concepts[2].id | https://openalex.org/C127759330 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5896745920181274 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q637416 |
| concepts[2].display_name | Codebook |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5712376236915588 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C115901376 |
| concepts[4].level | 2 |
| concepts[4].score | 0.539269208908081 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q184199 |
| concepts[4].display_name | Automation |
| concepts[5].id | https://openalex.org/C78548338 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5192306637763977 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2493 |
| concepts[5].display_name | Data compression |
| concepts[6].id | https://openalex.org/C111335779 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5017070770263672 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q3454686 |
| concepts[6].display_name | Reduction (mathematics) |
| concepts[7].id | https://openalex.org/C50644808 |
| concepts[7].level | 2 |
| concepts[7].score | 0.495367169380188 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[7].display_name | Artificial neural network |
| concepts[8].id | https://openalex.org/C125411270 |
| concepts[8].level | 2 |
| concepts[8].score | 0.485621839761734 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q18653 |
| concepts[8].display_name | Encoding (memory) |
| concepts[9].id | https://openalex.org/C31601959 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4754749834537506 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q931309 |
| concepts[9].display_name | Medical imaging |
| concepts[10].id | https://openalex.org/C154579607 |
| concepts[10].level | 3 |
| concepts[10].score | 0.43394821882247925 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q3373850 |
| concepts[10].display_name | Peak signal-to-noise ratio |
| concepts[11].id | https://openalex.org/C25797200 |
| concepts[11].level | 3 |
| concepts[11].score | 0.4312281608581543 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q828137 |
| concepts[11].display_name | Compression ratio |
| concepts[12].id | https://openalex.org/C124101348 |
| concepts[12].level | 1 |
| concepts[12].score | 0.3822709321975708 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[12].display_name | Data mining |
| concepts[13].id | https://openalex.org/C9417928 |
| concepts[13].level | 3 |
| concepts[13].score | 0.3626422584056854 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1070689 |
| concepts[13].display_name | Image processing |
| concepts[14].id | https://openalex.org/C31972630 |
| concepts[14].level | 1 |
| concepts[14].score | 0.3577818274497986 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[14].display_name | Computer vision |
| concepts[15].id | https://openalex.org/C115961682 |
| concepts[15].level | 2 |
| concepts[15].score | 0.3160170912742615 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[15].display_name | Image (mathematics) |
| concepts[16].id | https://openalex.org/C33923547 |
| concepts[16].level | 0 |
| concepts[16].score | 0.12582403421401978 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[16].display_name | Mathematics |
| concepts[17].id | https://openalex.org/C127413603 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[17].display_name | Engineering |
| concepts[18].id | https://openalex.org/C511840579 |
| concepts[18].level | 2 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q12757 |
| concepts[18].display_name | Internal combustion engine |
| concepts[19].id | https://openalex.org/C78519656 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q101333 |
| concepts[19].display_name | Mechanical engineering |
| concepts[20].id | https://openalex.org/C171146098 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q124192 |
| concepts[20].display_name | Automotive engineering |
| concepts[21].id | https://openalex.org/C2524010 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[21].display_name | Geometry |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7475126385688782 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/image-compression |
| keywords[1].score | 0.6916027069091797 |
| keywords[1].display_name | Image compression |
| keywords[2].id | https://openalex.org/keywords/codebook |
| keywords[2].score | 0.5896745920181274 |
| keywords[2].display_name | Codebook |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.5712376236915588 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/automation |
| keywords[4].score | 0.539269208908081 |
| keywords[4].display_name | Automation |
| keywords[5].id | https://openalex.org/keywords/data-compression |
| keywords[5].score | 0.5192306637763977 |
| keywords[5].display_name | Data compression |
| keywords[6].id | https://openalex.org/keywords/reduction |
| keywords[6].score | 0.5017070770263672 |
| keywords[6].display_name | Reduction (mathematics) |
| keywords[7].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[7].score | 0.495367169380188 |
| keywords[7].display_name | Artificial neural network |
| keywords[8].id | https://openalex.org/keywords/encoding |
| keywords[8].score | 0.485621839761734 |
| keywords[8].display_name | Encoding (memory) |
| keywords[9].id | https://openalex.org/keywords/medical-imaging |
| keywords[9].score | 0.4754749834537506 |
| keywords[9].display_name | Medical imaging |
| keywords[10].id | https://openalex.org/keywords/peak-signal-to-noise-ratio |
| keywords[10].score | 0.43394821882247925 |
| keywords[10].display_name | Peak signal-to-noise ratio |
| keywords[11].id | https://openalex.org/keywords/compression-ratio |
| keywords[11].score | 0.4312281608581543 |
| keywords[11].display_name | Compression ratio |
| keywords[12].id | https://openalex.org/keywords/data-mining |
| keywords[12].score | 0.3822709321975708 |
| keywords[12].display_name | Data mining |
| keywords[13].id | https://openalex.org/keywords/image-processing |
| keywords[13].score | 0.3626422584056854 |
| keywords[13].display_name | Image processing |
| keywords[14].id | https://openalex.org/keywords/computer-vision |
| keywords[14].score | 0.3577818274497986 |
| keywords[14].display_name | Computer vision |
| keywords[15].id | https://openalex.org/keywords/image |
| keywords[15].score | 0.3160170912742615 |
| keywords[15].display_name | Image (mathematics) |
| keywords[16].id | https://openalex.org/keywords/mathematics |
| keywords[16].score | 0.12582403421401978 |
| keywords[16].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.1155/2022/2354866 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S36625193 |
| locations[0].source.issn | 2040-2295, 2040-2309 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2040-2295 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of Healthcare Engineering |
| locations[0].source.host_organization | https://openalex.org/P4310319869 |
| locations[0].source.host_organization_name | Hindawi Publishing Corporation |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319869 |
| locations[0].source.host_organization_lineage_names | Hindawi Publishing Corporation |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://downloads.hindawi.com/journals/jhe/2022/2354866.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Healthcare Engineering |
| locations[0].landing_page_url | https://doi.org/10.1155/2022/2354866 |
| locations[1].id | pmid:35256896 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Journal of healthcare engineering |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/35256896 |
| locations[2].id | pmh:oai:doaj.org/article:8dddd2bff7114079953a4ab9c65393f7 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | cc-by-sa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Journal of Healthcare Engineering, Vol 2022 (2022) |
| locations[2].landing_page_url | https://doaj.org/article/8dddd2bff7114079953a4ab9c65393f7 |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:8898112 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | J Healthc Eng |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/8898112 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5110848214 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Chethana Sridhar |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Computer Applications, Sivananda Sarma Memorial R.V. College, Bangalore, Karnataka, India |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Chethana Sridhar |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Computer Applications, Sivananda Sarma Memorial R.V. College, Bangalore, Karnataka, India |
| authorships[1].author.id | https://openalex.org/A5006705078 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2287-0122 |
| authorships[1].author.display_name | Piyush Kumar Pareek |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Computer Science Engineering, Nitte Meenakshi Institute of Technology, Bangalore, Karnataka, India |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Piyush Kumar Pareek |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Computer Science Engineering, Nitte Meenakshi Institute of Technology, Bangalore, Karnataka, India |
| authorships[2].author.id | https://openalex.org/A5102754702 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | R. Kalidoss |
| authorships[2].countries | IN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I20107917, https://openalex.org/I916357946 |
| authorships[2].affiliations[0].raw_affiliation_string | Sri Sivasubramaniya Nadar College of Engineering, Chennai, India |
| authorships[2].institutions[0].id | https://openalex.org/I916357946 |
| authorships[2].institutions[0].ror | https://ror.org/054psm803 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I916357946 |
| authorships[2].institutions[0].country_code | |
| authorships[2].institutions[0].display_name | Sri Sivasubramaniya Nadar College of Engineering |
| authorships[2].institutions[1].id | https://openalex.org/I20107917 |
| authorships[2].institutions[1].ror | https://ror.org/0108gdg43 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I20107917 |
| authorships[2].institutions[1].country_code | IN |
| authorships[2].institutions[1].display_name | Sri Ramachandra Institute of Higher Education and Research |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | R. Kalidoss |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Sri Sivasubramaniya Nadar College of Engineering, Chennai, India |
| authorships[3].author.id | https://openalex.org/A5054500045 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5852-1955 |
| authorships[3].author.display_name | Sajjad Shaukat Jamal |
| authorships[3].countries | SA |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I82952536 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Mathematics, College of Science, King Khalid University, Abha, Saudi Arabia |
| authorships[3].institutions[0].id | https://openalex.org/I82952536 |
| authorships[3].institutions[0].ror | https://ror.org/052kwzs30 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I82952536 |
| authorships[3].institutions[0].country_code | SA |
| authorships[3].institutions[0].display_name | King Khalid University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Sajjad Shaukat Jamal |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Mathematics, College of Science, King Khalid University, Abha, Saudi Arabia |
| authorships[4].author.id | https://openalex.org/A5053638739 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-3092-2415 |
| authorships[4].author.display_name | Prashant Kumar Shukla |
| authorships[4].countries | IN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I875944469 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur 522502, Andhra Pradesh, India |
| authorships[4].institutions[0].id | https://openalex.org/I875944469 |
| authorships[4].institutions[0].ror | https://ror.org/02k949197 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I875944469 |
| authorships[4].institutions[0].country_code | IN |
| authorships[4].institutions[0].display_name | Koneru Lakshmaiah Education Foundation |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Prashant Kumar Shukla |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur 522502, Andhra Pradesh, India |
| authorships[5].author.id | https://openalex.org/A5076552529 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-5687-9649 |
| authorships[5].author.display_name | Stephen Jeswinde Nuagah |
| authorships[5].countries | GH |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I2800834503, https://openalex.org/I4399657950 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Electrical Engineering, Tamale Technical University, Tamale, Ghana |
| authorships[5].institutions[0].id | https://openalex.org/I4399657950 |
| authorships[5].institutions[0].ror | https://ror.org/00xxrr382 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I4399657950 |
| authorships[5].institutions[0].country_code | |
| authorships[5].institutions[0].display_name | Tamale Technical University |
| authorships[5].institutions[1].id | https://openalex.org/I2800834503 |
| authorships[5].institutions[1].ror | https://ror.org/00f9jfw45 |
| authorships[5].institutions[1].type | healthcare |
| authorships[5].institutions[1].lineage | https://openalex.org/I2800834503 |
| authorships[5].institutions[1].country_code | GH |
| authorships[5].institutions[1].display_name | Tamale Teaching Hospital |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Stephen Jeswinde Nuagah |
| authorships[5].is_corresponding | True |
| authorships[5].raw_affiliation_strings | Department of Electrical Engineering, Tamale Technical University, Tamale, Ghana |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://downloads.hindawi.com/journals/jhe/2022/2354866.pdf |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Optimal Medical Image Size Reduction Model Creation Using Recurrent Neural Network and GenPSOWVQ |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12702 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 0.9990000128746033 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2808 |
| primary_topic.subfield.display_name | Neurology |
| primary_topic.display_name | Brain Tumor Detection and Classification |
| related_works | https://openalex.org/W98470534, https://openalex.org/W2386366915, https://openalex.org/W2140663695, https://openalex.org/W2022517628, https://openalex.org/W4220868150, https://openalex.org/W1487213935, https://openalex.org/W4312724860, https://openalex.org/W2088378984, https://openalex.org/W2569922886, https://openalex.org/W3112580190 |
| cited_by_count | 77 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 6 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 13 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 23 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 35 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1155/2022/2354866 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S36625193 |
| best_oa_location.source.issn | 2040-2295, 2040-2309 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 2040-2295 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Journal of Healthcare Engineering |
| best_oa_location.source.host_organization | https://openalex.org/P4310319869 |
| best_oa_location.source.host_organization_name | Hindawi Publishing Corporation |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319869 |
| best_oa_location.source.host_organization_lineage_names | Hindawi Publishing Corporation |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://downloads.hindawi.com/journals/jhe/2022/2354866.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Healthcare Engineering |
| best_oa_location.landing_page_url | https://doi.org/10.1155/2022/2354866 |
| primary_location.id | doi:10.1155/2022/2354866 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S36625193 |
| primary_location.source.issn | 2040-2295, 2040-2309 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2040-2295 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of Healthcare Engineering |
| primary_location.source.host_organization | https://openalex.org/P4310319869 |
| primary_location.source.host_organization_name | Hindawi Publishing Corporation |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319869 |
| primary_location.source.host_organization_lineage_names | Hindawi Publishing Corporation |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://downloads.hindawi.com/journals/jhe/2022/2354866.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Healthcare Engineering |
| primary_location.landing_page_url | https://doi.org/10.1155/2022/2354866 |
| publication_date | 2022-02-26 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W1984781901, https://openalex.org/W1966854150, https://openalex.org/W2602061033, https://openalex.org/W2099724512, https://openalex.org/W2149140091, https://openalex.org/W2147583694, https://openalex.org/W1964367673, https://openalex.org/W2058500349, https://openalex.org/W2132984323, https://openalex.org/W2149072817, https://openalex.org/W4255272544, https://openalex.org/W1966429948, https://openalex.org/W2527582055, https://openalex.org/W1969823793, https://openalex.org/W2107958947, https://openalex.org/W2622458132, https://openalex.org/W2017129144, https://openalex.org/W2086274422, https://openalex.org/W2462409828, https://openalex.org/W2503019132, https://openalex.org/W2778606111, https://openalex.org/W2343627233, https://openalex.org/W2130153411, https://openalex.org/W821232595, https://openalex.org/W2137499562, https://openalex.org/W2034691759, https://openalex.org/W2976307349, https://openalex.org/W2762003381, https://openalex.org/W2804949086, https://openalex.org/W3132995022, https://openalex.org/W4296753750, https://openalex.org/W2953516452, https://openalex.org/W3187038914, https://openalex.org/W1505723240, https://openalex.org/W2964266884 |
| referenced_works_count | 35 |
| abstract_inverted_index.A | 69 |
| abstract_inverted_index.a | 4, 7, 89, 108, 119, 131, 191, 214 |
| abstract_inverted_index.CR | 175 |
| abstract_inverted_index.In | 23, 199 |
| abstract_inverted_index.It | 42 |
| abstract_inverted_index.So | 104 |
| abstract_inverted_index.in | 101 |
| abstract_inverted_index.is | 2, 43, 48, 87, 96, 128 |
| abstract_inverted_index.it | 95 |
| abstract_inverted_index.of | 26, 82, 133, 208 |
| abstract_inverted_index.on | 85 |
| abstract_inverted_index.to | 10, 19, 33, 52, 65, 92, 98 |
| abstract_inverted_index.SNR | 212 |
| abstract_inverted_index.The | 80, 126, 138, 159 |
| abstract_inverted_index.VQ. | 125 |
| abstract_inverted_index.and | 6, 31, 39, 55, 62, 135, 174, 211 |
| abstract_inverted_index.are | 29 |
| abstract_inverted_index.can | 75 |
| abstract_inverted_index.for | 37, 50, 72, 190, 213 |
| abstract_inverted_index.new | 109 |
| abstract_inverted_index.the | 24, 34, 46, 114, 181, 196, 201, 219 |
| abstract_inverted_index.was | 162 |
| abstract_inverted_index.MSE, | 170, 209 |
| abstract_inverted_index.PSNR | 187 |
| abstract_inverted_index.SNR, | 173 |
| abstract_inverted_index.been | 17 |
| abstract_inverted_index.data | 84 |
| abstract_inverted_index.good | 70 |
| abstract_inverted_index.have | 16 |
| abstract_inverted_index.help | 76 |
| abstract_inverted_index.sent | 32 |
| abstract_inverted_index.show | 179 |
| abstract_inverted_index.than | 195, 218 |
| abstract_inverted_index.that | 45, 117, 180 |
| abstract_inverted_index.this | 105 |
| abstract_inverted_index.time | 5 |
| abstract_inverted_index.uses | 118 |
| abstract_inverted_index.when | 155 |
| abstract_inverted_index.with | 123, 151 |
| abstract_inverted_index.NMSE, | 172 |
| abstract_inverted_index.PSNR, | 169 |
| abstract_inverted_index.RMSE, | 210 |
| abstract_inverted_index.SSIM, | 171 |
| abstract_inverted_index.SSIMM | 188 |
| abstract_inverted_index.brain | 36 |
| abstract_inverted_index.built | 129 |
| abstract_inverted_index.costs | 154 |
| abstract_inverted_index.given | 192, 215 |
| abstract_inverted_index.image | 47, 110, 141, 149 |
| abstract_inverted_index.large | 60 |
| abstract_inverted_index.lower | 152, 206 |
| abstract_inverted_index.model | 143 |
| abstract_inverted_index.newly | 139 |
| abstract_inverted_index.noted | 44 |
| abstract_inverted_index.ratio | 194, 217 |
| abstract_inverted_index.their | 67 |
| abstract_inverted_index.these | 21, 78 |
| abstract_inverted_index.using | 130, 164, 168 |
| abstract_inverted_index.while | 147 |
| abstract_inverted_index.Images | 58 |
| abstract_inverted_index.always | 3, 88 |
| abstract_inverted_index.called | 113 |
| abstract_inverted_index.costs. | 57 |
| abstract_inverted_index.higher | 186 |
| abstract_inverted_index.images | 28 |
| abstract_inverted_index.method | 116, 161, 184, 204 |
| abstract_inverted_index.neural | 121 |
| abstract_inverted_index.proper | 11 |
| abstract_inverted_index.reduce | 53, 99 |
| abstract_inverted_index.remote | 35 |
| abstract_inverted_index.scheme | 112 |
| abstract_inverted_index.tested | 163 |
| abstract_inverted_index.values | 189, 207 |
| abstract_inverted_index.yields | 185, 205 |
| abstract_inverted_index.Medical | 0 |
| abstract_inverted_index.attains | 144 |
| abstract_inverted_index.genetic | 136 |
| abstract_inverted_index.images. | 158 |
| abstract_inverted_index.imaging | 167 |
| abstract_inverted_index.improve | 20 |
| abstract_inverted_index.issues. | 22 |
| abstract_inverted_index.making. | 41 |
| abstract_inverted_index.medical | 12, 102, 166 |
| abstract_inverted_index.network | 122 |
| abstract_inverted_index.perform | 66 |
| abstract_inverted_index.precise | 145 |
| abstract_inverted_index.process | 25 |
| abstract_inverted_index.require | 59 |
| abstract_inverted_index.results | 178 |
| abstract_inverted_index.storage | 61 |
| abstract_inverted_index.systems | 15 |
| abstract_inverted_index.wavelet | 124 |
| abstract_inverted_index.written | 49 |
| abstract_inverted_index.accuracy | 86, 150 |
| abstract_inverted_index.approach | 9 |
| abstract_inverted_index.clinical | 157 |
| abstract_inverted_index.codebook | 127 |
| abstract_inverted_index.decision | 40 |
| abstract_inverted_index.document | 106 |
| abstract_inverted_index.encoding | 156 |
| abstract_inverted_index.existing | 197, 220 |
| abstract_inverted_index.imaging, | 94 |
| abstract_inverted_index.imaging. | 103 |
| abstract_inverted_index.methods. | 198, 221 |
| abstract_inverted_index.minimize | 77 |
| abstract_inverted_index.optimize | 93 |
| abstract_inverted_index.pictures | 73 |
| abstract_inverted_index.proposed | 160, 182, 202 |
| abstract_inverted_index.question | 81 |
| abstract_inverted_index.strategy | 71 |
| abstract_inverted_index.GenPSOWVQ | 115, 183, 203 |
| abstract_inverted_index.addition, | 200 |
| abstract_inverted_index.developed | 18, 140 |
| abstract_inverted_index.diagnosis | 1 |
| abstract_inverted_index.fragments | 134 |
| abstract_inverted_index.necessary | 97 |
| abstract_inverted_index.processed | 30 |
| abstract_inverted_index.real-time | 165 |
| abstract_inverted_index.recurrent | 120 |
| abstract_inverted_index.resources | 64 |
| abstract_inverted_index.sensitive | 8 |
| abstract_inverted_index.Automation | 14 |
| abstract_inverted_index.Therefore, | 91 |
| abstract_inverted_index.challenge. | 90 |
| abstract_inverted_index.compaction | 51 |
| abstract_inverted_index.introduces | 107 |
| abstract_inverted_index.processing | 38, 54 |
| abstract_inverted_index.treatment. | 13 |
| abstract_inverted_index.algorithms. | 137 |
| abstract_inverted_index.automation, | 27 |
| abstract_inverted_index.combination | 132 |
| abstract_inverted_index.compressing | 83 |
| abstract_inverted_index.compression | 74, 111, 142, 146, 193, 216 |
| abstract_inverted_index.indicators. | 176 |
| abstract_inverted_index.maintaining | 148 |
| abstract_inverted_index.operations. | 68 |
| abstract_inverted_index.Experimental | 177 |
| abstract_inverted_index.transmission | 63 |
| abstract_inverted_index.computational | 56, 153 |
| abstract_inverted_index.requirements. | 79 |
| abstract_inverted_index.inconsistencies | 100 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 98 |
| corresponding_author_ids | https://openalex.org/A5076552529 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 6 |
| corresponding_institution_ids | https://openalex.org/I2800834503, https://openalex.org/I4399657950 |
| citation_normalized_percentile.value | 0.97609716 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |