Optimal Reinforcement Learning with Asymmetric Updating in Volatile Environments: a Simulation Study Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.1101/2021.02.15.431283
A bstract The ability to predict the future is essential for decision-making and interaction with the environment to avoid punishment and gain reward. Reinforcement learning algorithms provide a normative way for interactive learning, especially in volatile environments. The optimal strategy for the classic reinforcement learning model is to increase the learning rate as volatility increases. Inspired by optimistic bias in humans, an alternative reinforcement learning model has been developed by adding a punishment learning rate to the classic reinforcement learning model. In this study, we aim to 1) compare the performance of these two models in interaction with different environments, and 2) find optimal parameters for the models. Our simulations indicate that having two different learning rates for rewards and punishments increases performance in a volatile environment. Investigation of the optimal parameters shows that in almost all environments, having a higher reward learning rate compared to the punishment learning rate is beneficial for achieving higher performance which in this case is the accumulation of more rewards. Our results suggest that to achieve high performance, we need a shorter memory window for recent rewards and a longer memory window for punishments. This is consistent with optimistic bias in human behavior.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1101/2021.02.15.431283
- https://www.biorxiv.org/content/biorxiv/early/2021/02/16/2021.02.15.431283.full.pdf
- OA Status
- green
- Cited By
- 10
- References
- 25
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3130948887
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3130948887Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1101/2021.02.15.431283Digital Object Identifier
- Title
-
Optimal Reinforcement Learning with Asymmetric Updating in Volatile Environments: a Simulation StudyWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-02-16Full publication date if available
- Authors
-
Mojtaba Rostami Kandroodi, Abdol‐Hossein Vahabie, Sara Ahmadi, Babak Nadjar Araabi, Majid Nili AhmadabadiList of authors in order
- Landing page
-
https://doi.org/10.1101/2021.02.15.431283Publisher landing page
- PDF URL
-
https://www.biorxiv.org/content/biorxiv/early/2021/02/16/2021.02.15.431283.full.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.biorxiv.org/content/biorxiv/early/2021/02/16/2021.02.15.431283.full.pdfDirect OA link when available
- Concepts
-
Reinforcement learning, Punishment (psychology), Reinforcement, Normative, Computer science, Volatility (finance), Artificial intelligence, Machine learning, Psychology, Social psychology, Econometrics, Mathematics, Epistemology, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
10Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 6, 2023: 1, 2022: 1Per-year citation counts (last 5 years)
- References (count)
-
25Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3130948887 |
|---|---|
| doi | https://doi.org/10.1101/2021.02.15.431283 |
| ids.doi | https://doi.org/10.1101/2021.02.15.431283 |
| ids.mag | 3130948887 |
| ids.openalex | https://openalex.org/W3130948887 |
| fwci | 1.07422445 |
| type | preprint |
| title | Optimal Reinforcement Learning with Asymmetric Updating in Volatile Environments: a Simulation Study |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10042 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 0.9958999752998352 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2805 |
| topics[0].subfield.display_name | Cognitive Neuroscience |
| topics[0].display_name | Neural and Behavioral Psychology Studies |
| topics[1].id | https://openalex.org/T10315 |
| topics[1].field.id | https://openalex.org/fields/18 |
| topics[1].field.display_name | Decision Sciences |
| topics[1].score | 0.9926999807357788 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1800 |
| topics[1].subfield.display_name | General Decision Sciences |
| topics[1].display_name | Decision-Making and Behavioral Economics |
| topics[2].id | https://openalex.org/T13283 |
| topics[2].field.id | https://openalex.org/fields/32 |
| topics[2].field.display_name | Psychology |
| topics[2].score | 0.9785000085830688 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3205 |
| topics[2].subfield.display_name | Experimental and Cognitive Psychology |
| topics[2].display_name | Mental Health Research Topics |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C97541855 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8212984800338745 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q830687 |
| concepts[0].display_name | Reinforcement learning |
| concepts[1].id | https://openalex.org/C2779295839 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7838842868804932 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q3544090 |
| concepts[1].display_name | Punishment (psychology) |
| concepts[2].id | https://openalex.org/C67203356 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6953554153442383 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1321905 |
| concepts[2].display_name | Reinforcement |
| concepts[3].id | https://openalex.org/C44725695 |
| concepts[3].level | 2 |
| concepts[3].score | 0.48866036534309387 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q288156 |
| concepts[3].display_name | Normative |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.4574351906776428 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C91602232 |
| concepts[5].level | 2 |
| concepts[5].score | 0.43043631315231323 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q756115 |
| concepts[5].display_name | Volatility (finance) |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.40094953775405884 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C119857082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.36867380142211914 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[7].display_name | Machine learning |
| concepts[8].id | https://openalex.org/C15744967 |
| concepts[8].level | 0 |
| concepts[8].score | 0.2764226496219635 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[8].display_name | Psychology |
| concepts[9].id | https://openalex.org/C77805123 |
| concepts[9].level | 1 |
| concepts[9].score | 0.15585941076278687 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q161272 |
| concepts[9].display_name | Social psychology |
| concepts[10].id | https://openalex.org/C149782125 |
| concepts[10].level | 1 |
| concepts[10].score | 0.14166969060897827 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[10].display_name | Econometrics |
| concepts[11].id | https://openalex.org/C33923547 |
| concepts[11].level | 0 |
| concepts[11].score | 0.08713662624359131 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[11].display_name | Mathematics |
| concepts[12].id | https://openalex.org/C111472728 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q9471 |
| concepts[12].display_name | Epistemology |
| concepts[13].id | https://openalex.org/C138885662 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[13].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/reinforcement-learning |
| keywords[0].score | 0.8212984800338745 |
| keywords[0].display_name | Reinforcement learning |
| keywords[1].id | https://openalex.org/keywords/punishment |
| keywords[1].score | 0.7838842868804932 |
| keywords[1].display_name | Punishment (psychology) |
| keywords[2].id | https://openalex.org/keywords/reinforcement |
| keywords[2].score | 0.6953554153442383 |
| keywords[2].display_name | Reinforcement |
| keywords[3].id | https://openalex.org/keywords/normative |
| keywords[3].score | 0.48866036534309387 |
| keywords[3].display_name | Normative |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.4574351906776428 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/volatility |
| keywords[5].score | 0.43043631315231323 |
| keywords[5].display_name | Volatility (finance) |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.40094953775405884 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/machine-learning |
| keywords[7].score | 0.36867380142211914 |
| keywords[7].display_name | Machine learning |
| keywords[8].id | https://openalex.org/keywords/psychology |
| keywords[8].score | 0.2764226496219635 |
| keywords[8].display_name | Psychology |
| keywords[9].id | https://openalex.org/keywords/social-psychology |
| keywords[9].score | 0.15585941076278687 |
| keywords[9].display_name | Social psychology |
| keywords[10].id | https://openalex.org/keywords/econometrics |
| keywords[10].score | 0.14166969060897827 |
| keywords[10].display_name | Econometrics |
| keywords[11].id | https://openalex.org/keywords/mathematics |
| keywords[11].score | 0.08713662624359131 |
| keywords[11].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.1101/2021.02.15.431283 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402567 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| locations[0].source.host_organization | https://openalex.org/I2750212522 |
| locations[0].source.host_organization_name | Cold Spring Harbor Laboratory |
| locations[0].source.host_organization_lineage | https://openalex.org/I2750212522 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.biorxiv.org/content/biorxiv/early/2021/02/16/2021.02.15.431283.full.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.1101/2021.02.15.431283 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5085306994 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5508-1421 |
| authorships[0].author.display_name | Mojtaba Rostami Kandroodi |
| authorships[0].countries | IR, NL |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I23946033 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Electrical and Computer Engineering, University of Tehran Tehran, Iran |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I145872427 |
| authorships[0].affiliations[1].raw_affiliation_string | Donders Institute, Radboud University, Nijmegen, The Netherlands |
| authorships[0].institutions[0].id | https://openalex.org/I23946033 |
| authorships[0].institutions[0].ror | https://ror.org/05vf56z40 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I23946033 |
| authorships[0].institutions[0].country_code | IR |
| authorships[0].institutions[0].display_name | University of Tehran |
| authorships[0].institutions[1].id | https://openalex.org/I145872427 |
| authorships[0].institutions[1].ror | https://ror.org/016xsfp80 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I145872427 |
| authorships[0].institutions[1].country_code | NL |
| authorships[0].institutions[1].display_name | Radboud University Nijmegen |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Mojtaba Rostami Kandroodi |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Donders Institute, Radboud University, Nijmegen, The Netherlands, School of Electrical and Computer Engineering, University of Tehran Tehran, Iran |
| authorships[1].author.id | https://openalex.org/A5085080553 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1603-8866 |
| authorships[1].author.display_name | Abdol‐Hossein Vahabie |
| authorships[1].countries | IR |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I23946033 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Electrical and Computer Engineering University of Tehran, Tehran, Iran |
| authorships[1].institutions[0].id | https://openalex.org/I23946033 |
| authorships[1].institutions[0].ror | https://ror.org/05vf56z40 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I23946033 |
| authorships[1].institutions[0].country_code | IR |
| authorships[1].institutions[0].display_name | University of Tehran |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Abdol-Hossein Vahabie |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Electrical and Computer Engineering University of Tehran, Tehran, Iran |
| authorships[2].author.id | https://openalex.org/A5080633319 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0919-8565 |
| authorships[2].author.display_name | Sara Ahmadi |
| authorships[2].countries | NL |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I145872427 |
| authorships[2].affiliations[0].raw_affiliation_string | Donders Institute, Radboud University, Nijmegen, The Netherlands |
| authorships[2].institutions[0].id | https://openalex.org/I145872427 |
| authorships[2].institutions[0].ror | https://ror.org/016xsfp80 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I145872427 |
| authorships[2].institutions[0].country_code | NL |
| authorships[2].institutions[0].display_name | Radboud University Nijmegen |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Sara Ahmadi |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Donders Institute, Radboud University, Nijmegen, The Netherlands |
| authorships[3].author.id | https://openalex.org/A5083876282 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5283-263X |
| authorships[3].author.display_name | Babak Nadjar Araabi |
| authorships[3].countries | IR |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I23946033 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Electrical and Computer Engineering University of Tehran, Tehran, Iran |
| authorships[3].institutions[0].id | https://openalex.org/I23946033 |
| authorships[3].institutions[0].ror | https://ror.org/05vf56z40 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I23946033 |
| authorships[3].institutions[0].country_code | IR |
| authorships[3].institutions[0].display_name | University of Tehran |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Babak Nadjar Araabi |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Electrical and Computer Engineering University of Tehran, Tehran, Iran |
| authorships[4].author.id | https://openalex.org/A5072135442 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-6370-6057 |
| authorships[4].author.display_name | Majid Nili Ahmadabadi |
| authorships[4].countries | IR |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I23946033 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Electrical and Computer Engineering University of Tehran, Tehran, Iran |
| authorships[4].institutions[0].id | https://openalex.org/I23946033 |
| authorships[4].institutions[0].ror | https://ror.org/05vf56z40 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I23946033 |
| authorships[4].institutions[0].country_code | IR |
| authorships[4].institutions[0].display_name | University of Tehran |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Majid Nili Ahmadabadi |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | School of Electrical and Computer Engineering University of Tehran, Tehran, Iran |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.biorxiv.org/content/biorxiv/early/2021/02/16/2021.02.15.431283.full.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Optimal Reinforcement Learning with Asymmetric Updating in Volatile Environments: a Simulation Study |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10042 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 0.9958999752998352 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2805 |
| primary_topic.subfield.display_name | Cognitive Neuroscience |
| primary_topic.display_name | Neural and Behavioral Psychology Studies |
| related_works | https://openalex.org/W2920061524, https://openalex.org/W4310083477, https://openalex.org/W2328553770, https://openalex.org/W1989297139, https://openalex.org/W2342143608, https://openalex.org/W2496755843, https://openalex.org/W1977959518, https://openalex.org/W4213090964, https://openalex.org/W2019751999, https://openalex.org/W2006191342 |
| cited_by_count | 10 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 6 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1101/2021.02.15.431283 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402567 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| best_oa_location.source.host_organization | https://openalex.org/I2750212522 |
| best_oa_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.biorxiv.org/content/biorxiv/early/2021/02/16/2021.02.15.431283.full.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.1101/2021.02.15.431283 |
| primary_location.id | doi:10.1101/2021.02.15.431283 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402567 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| primary_location.source.host_organization | https://openalex.org/I2750212522 |
| primary_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| primary_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.biorxiv.org/content/biorxiv/early/2021/02/16/2021.02.15.431283.full.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.1101/2021.02.15.431283 |
| publication_date | 2021-02-16 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2123429050, https://openalex.org/W3034779580, https://openalex.org/W2979918279, https://openalex.org/W2119095023, https://openalex.org/W2013293748, https://openalex.org/W2606776585, https://openalex.org/W2014979870, https://openalex.org/W3162174204, https://openalex.org/W3111213118, https://openalex.org/W2595891121, https://openalex.org/W2052398297, https://openalex.org/W1581202840, https://openalex.org/W2046713808, https://openalex.org/W160989634, https://openalex.org/W2039909349, https://openalex.org/W2070972521, https://openalex.org/W6677916085, https://openalex.org/W2030874315, https://openalex.org/W32403112, https://openalex.org/W2989963295, https://openalex.org/W4226155358, https://openalex.org/W2121863487, https://openalex.org/W2107029055, https://openalex.org/W1557517019, https://openalex.org/W2562554144 |
| referenced_works_count | 25 |
| abstract_inverted_index.A | 0 |
| abstract_inverted_index.a | 27, 71, 124, 139, 176, 184 |
| abstract_inverted_index.1) | 87 |
| abstract_inverted_index.2) | 101 |
| abstract_inverted_index.In | 81 |
| abstract_inverted_index.an | 61 |
| abstract_inverted_index.as | 52 |
| abstract_inverted_index.by | 56, 69 |
| abstract_inverted_index.in | 34, 59, 95, 123, 134, 157, 196 |
| abstract_inverted_index.is | 8, 46, 150, 160, 191 |
| abstract_inverted_index.of | 91, 128, 163 |
| abstract_inverted_index.to | 4, 17, 47, 75, 86, 145, 170 |
| abstract_inverted_index.we | 84, 174 |
| abstract_inverted_index.Our | 108, 166 |
| abstract_inverted_index.The | 2, 37 |
| abstract_inverted_index.aim | 85 |
| abstract_inverted_index.all | 136 |
| abstract_inverted_index.and | 12, 20, 100, 119, 183 |
| abstract_inverted_index.for | 10, 30, 40, 105, 117, 152, 180, 188 |
| abstract_inverted_index.has | 66 |
| abstract_inverted_index.the | 6, 15, 41, 49, 76, 89, 106, 129, 146, 161 |
| abstract_inverted_index.two | 93, 113 |
| abstract_inverted_index.way | 29 |
| abstract_inverted_index.This | 190 |
| abstract_inverted_index.been | 67 |
| abstract_inverted_index.bias | 58, 195 |
| abstract_inverted_index.case | 159 |
| abstract_inverted_index.find | 102 |
| abstract_inverted_index.gain | 21 |
| abstract_inverted_index.high | 172 |
| abstract_inverted_index.more | 164 |
| abstract_inverted_index.need | 175 |
| abstract_inverted_index.rate | 51, 74, 143, 149 |
| abstract_inverted_index.that | 111, 133, 169 |
| abstract_inverted_index.this | 82, 158 |
| abstract_inverted_index.with | 14, 97, 193 |
| abstract_inverted_index.avoid | 18 |
| abstract_inverted_index.human | 197 |
| abstract_inverted_index.model | 45, 65 |
| abstract_inverted_index.rates | 116 |
| abstract_inverted_index.shows | 132 |
| abstract_inverted_index.these | 92 |
| abstract_inverted_index.which | 156 |
| abstract_inverted_index.adding | 70 |
| abstract_inverted_index.almost | 135 |
| abstract_inverted_index.future | 7 |
| abstract_inverted_index.having | 112, 138 |
| abstract_inverted_index.higher | 140, 154 |
| abstract_inverted_index.longer | 185 |
| abstract_inverted_index.memory | 178, 186 |
| abstract_inverted_index.model. | 80 |
| abstract_inverted_index.models | 94 |
| abstract_inverted_index.recent | 181 |
| abstract_inverted_index.reward | 141 |
| abstract_inverted_index.study, | 83 |
| abstract_inverted_index.window | 179, 187 |
| abstract_inverted_index.ability | 3 |
| abstract_inverted_index.achieve | 171 |
| abstract_inverted_index.bstract | 1 |
| abstract_inverted_index.classic | 42, 77 |
| abstract_inverted_index.compare | 88 |
| abstract_inverted_index.humans, | 60 |
| abstract_inverted_index.models. | 107 |
| abstract_inverted_index.optimal | 38, 103, 130 |
| abstract_inverted_index.predict | 5 |
| abstract_inverted_index.provide | 26 |
| abstract_inverted_index.results | 167 |
| abstract_inverted_index.reward. | 22 |
| abstract_inverted_index.rewards | 118, 182 |
| abstract_inverted_index.shorter | 177 |
| abstract_inverted_index.suggest | 168 |
| abstract_inverted_index.Inspired | 55 |
| abstract_inverted_index.compared | 144 |
| abstract_inverted_index.increase | 48 |
| abstract_inverted_index.indicate | 110 |
| abstract_inverted_index.learning | 24, 44, 50, 64, 73, 79, 115, 142, 148 |
| abstract_inverted_index.rewards. | 165 |
| abstract_inverted_index.strategy | 39 |
| abstract_inverted_index.volatile | 35, 125 |
| abstract_inverted_index.achieving | 153 |
| abstract_inverted_index.behavior. | 198 |
| abstract_inverted_index.developed | 68 |
| abstract_inverted_index.different | 98, 114 |
| abstract_inverted_index.essential | 9 |
| abstract_inverted_index.increases | 121 |
| abstract_inverted_index.learning, | 32 |
| abstract_inverted_index.normative | 28 |
| abstract_inverted_index.algorithms | 25 |
| abstract_inverted_index.beneficial | 151 |
| abstract_inverted_index.consistent | 192 |
| abstract_inverted_index.especially | 33 |
| abstract_inverted_index.increases. | 54 |
| abstract_inverted_index.optimistic | 57, 194 |
| abstract_inverted_index.parameters | 104, 131 |
| abstract_inverted_index.punishment | 19, 72, 147 |
| abstract_inverted_index.volatility | 53 |
| abstract_inverted_index.alternative | 62 |
| abstract_inverted_index.environment | 16 |
| abstract_inverted_index.interaction | 13, 96 |
| abstract_inverted_index.interactive | 31 |
| abstract_inverted_index.performance | 90, 122, 155 |
| abstract_inverted_index.punishments | 120 |
| abstract_inverted_index.simulations | 109 |
| abstract_inverted_index.accumulation | 162 |
| abstract_inverted_index.environment. | 126 |
| abstract_inverted_index.performance, | 173 |
| abstract_inverted_index.punishments. | 189 |
| abstract_inverted_index.Investigation | 127 |
| abstract_inverted_index.Reinforcement | 23 |
| abstract_inverted_index.environments, | 99, 137 |
| abstract_inverted_index.environments. | 36 |
| abstract_inverted_index.reinforcement | 43, 63, 78 |
| abstract_inverted_index.decision-making | 11 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5085306994 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I145872427, https://openalex.org/I23946033 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.8199999928474426 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile.value | 0.72066427 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |