Optimal Statistical Structure Validation of Brain Tumors Using Refractive Index Article Swipe
YOU?
·
· 2015
· Open Access
·
· DOI: https://doi.org/10.1016/j.procs.2015.07.412
Tumour segmentation from brain MRI is more than a decade old problem in the field of medical imaging. Till date automated brain tumour segmentation happens to be a difficult task due to the variance and complexity of tumour growth. In this paper, we present this segmentation problem for the purpose of determining the exact location of brain tumour using refractive index study on the structural analysis of both tumorous and normal tissues. Initially, as per existing survey 3 kinds of features namely, intensity-based, texture-based, and symmetry-based are extracted from the structural elements. Then reduction of this feature set is performed and similar features are clustered together. Refractive index analysis is performed on each of the clusters from the MR T2 relaxation time. Deviation from a threshold value of RI for majority of pixels in a particular cluster denotes it to be the tumorous region.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.procs.2015.07.412
- OA Status
- diamond
- Cited By
- 2
- References
- 14
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W1727250640
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W1727250640Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.procs.2015.07.412Digital Object Identifier
- Title
-
Optimal Statistical Structure Validation of Brain Tumors Using Refractive IndexWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2015Year of publication
- Publication date
-
2015-01-01Full publication date if available
- Authors
-
Sushmit Ghosh, Soham Kundu, Sushovan Chowdhury, Aurpan MajumderList of authors in order
- Landing page
-
https://doi.org/10.1016/j.procs.2015.07.412Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.procs.2015.07.412Direct OA link when available
- Concepts
-
Computer science, Segmentation, Artificial intelligence, Pattern recognition (psychology), Feature (linguistics), Pixel, Cluster (spacecraft), Image segmentation, Set (abstract data type), Variance (accounting), Philosophy, Linguistics, Programming language, Accounting, BusinessTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1, 2017: 1Per-year citation counts (last 5 years)
- References (count)
-
14Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W1727250640 |
|---|---|
| doi | https://doi.org/10.1016/j.procs.2015.07.412 |
| ids.doi | https://doi.org/10.1016/j.procs.2015.07.412 |
| ids.mag | 1727250640 |
| ids.openalex | https://openalex.org/W1727250640 |
| fwci | 0.20873662 |
| type | article |
| title | Optimal Statistical Structure Validation of Brain Tumors Using Refractive Index |
| biblio.issue | |
| biblio.volume | 57 |
| biblio.last_page | 177 |
| biblio.first_page | 168 |
| topics[0].id | https://openalex.org/T10052 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9936000108718872 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Medical Image Segmentation Techniques |
| topics[1].id | https://openalex.org/T10824 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9922999739646912 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Image Retrieval and Classification Techniques |
| topics[2].id | https://openalex.org/T10057 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9865000247955322 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Face and Expression Recognition |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8130235075950623 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C89600930 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7556183338165283 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[1].display_name | Segmentation |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5857316255569458 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C153180895 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5335232615470886 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[3].display_name | Pattern recognition (psychology) |
| concepts[4].id | https://openalex.org/C2776401178 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5327064394950867 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[4].display_name | Feature (linguistics) |
| concepts[5].id | https://openalex.org/C160633673 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5310423970222473 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q355198 |
| concepts[5].display_name | Pixel |
| concepts[6].id | https://openalex.org/C164866538 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4683890640735626 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q367351 |
| concepts[6].display_name | Cluster (spacecraft) |
| concepts[7].id | https://openalex.org/C124504099 |
| concepts[7].level | 3 |
| concepts[7].score | 0.451917439699173 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q56933 |
| concepts[7].display_name | Image segmentation |
| concepts[8].id | https://openalex.org/C177264268 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4349384307861328 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[8].display_name | Set (abstract data type) |
| concepts[9].id | https://openalex.org/C196083921 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4231826066970825 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7915758 |
| concepts[9].display_name | Variance (accounting) |
| concepts[10].id | https://openalex.org/C138885662 |
| concepts[10].level | 0 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[10].display_name | Philosophy |
| concepts[11].id | https://openalex.org/C41895202 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[11].display_name | Linguistics |
| concepts[12].id | https://openalex.org/C199360897 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[12].display_name | Programming language |
| concepts[13].id | https://openalex.org/C121955636 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q4116214 |
| concepts[13].display_name | Accounting |
| concepts[14].id | https://openalex.org/C144133560 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q4830453 |
| concepts[14].display_name | Business |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8130235075950623 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/segmentation |
| keywords[1].score | 0.7556183338165283 |
| keywords[1].display_name | Segmentation |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.5857316255569458 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/pattern-recognition |
| keywords[3].score | 0.5335232615470886 |
| keywords[3].display_name | Pattern recognition (psychology) |
| keywords[4].id | https://openalex.org/keywords/feature |
| keywords[4].score | 0.5327064394950867 |
| keywords[4].display_name | Feature (linguistics) |
| keywords[5].id | https://openalex.org/keywords/pixel |
| keywords[5].score | 0.5310423970222473 |
| keywords[5].display_name | Pixel |
| keywords[6].id | https://openalex.org/keywords/cluster |
| keywords[6].score | 0.4683890640735626 |
| keywords[6].display_name | Cluster (spacecraft) |
| keywords[7].id | https://openalex.org/keywords/image-segmentation |
| keywords[7].score | 0.451917439699173 |
| keywords[7].display_name | Image segmentation |
| keywords[8].id | https://openalex.org/keywords/set |
| keywords[8].score | 0.4349384307861328 |
| keywords[8].display_name | Set (abstract data type) |
| keywords[9].id | https://openalex.org/keywords/variance |
| keywords[9].score | 0.4231826066970825 |
| keywords[9].display_name | Variance (accounting) |
| language | en |
| locations[0].id | doi:10.1016/j.procs.2015.07.412 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S120348307 |
| locations[0].source.issn | 1877-0509 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1877-0509 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Procedia Computer Science |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Procedia Computer Science |
| locations[0].landing_page_url | https://doi.org/10.1016/j.procs.2015.07.412 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5006013873 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3791-1572 |
| authorships[0].author.display_name | Sushmit Ghosh |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I1288043984 |
| authorships[0].affiliations[0].raw_affiliation_string | Dept. of Electronics and Communication Engineering, Techno India, Salt Lake, Kolkata 700091, India |
| authorships[0].institutions[0].id | https://openalex.org/I1288043984 |
| authorships[0].institutions[0].ror | https://ror.org/00v1y6t69 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I1288043984 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | Techno India University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Sushmit Ghosh |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Dept. of Electronics and Communication Engineering, Techno India, Salt Lake, Kolkata 700091, India |
| authorships[1].author.id | https://openalex.org/A5044437542 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Soham Kundu |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I1288043984 |
| authorships[1].affiliations[0].raw_affiliation_string | Dept. of Electronics and Communication Engineering, Techno India, Salt Lake, Kolkata 700091, India |
| authorships[1].institutions[0].id | https://openalex.org/I1288043984 |
| authorships[1].institutions[0].ror | https://ror.org/00v1y6t69 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I1288043984 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Techno India University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Soham Kundu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Dept. of Electronics and Communication Engineering, Techno India, Salt Lake, Kolkata 700091, India |
| authorships[2].author.id | https://openalex.org/A5031704079 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Sushovan Chowdhury |
| authorships[2].countries | IN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I1288043984 |
| authorships[2].affiliations[0].raw_affiliation_string | Dept. of Electronics and Communication Engineering, Techno India, Salt Lake, Kolkata 700091, India |
| authorships[2].institutions[0].id | https://openalex.org/I1288043984 |
| authorships[2].institutions[0].ror | https://ror.org/00v1y6t69 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I1288043984 |
| authorships[2].institutions[0].country_code | IN |
| authorships[2].institutions[0].display_name | Techno India University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Sushovan Chowdhury |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Dept. of Electronics and Communication Engineering, Techno India, Salt Lake, Kolkata 700091, India |
| authorships[3].author.id | https://openalex.org/A5071254241 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-6864-1064 |
| authorships[3].author.display_name | Aurpan Majumder |
| authorships[3].countries | IN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I155837530 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Electronics and Communication Engineering, National Institute of Technology, Durgapur – 713209, India |
| authorships[3].institutions[0].id | https://openalex.org/I155837530 |
| authorships[3].institutions[0].ror | https://ror.org/04ds0jm32 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I155837530 |
| authorships[3].institutions[0].country_code | IN |
| authorships[3].institutions[0].display_name | National Institute of Technology Durgapur |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Aurpan Majumder |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Electronics and Communication Engineering, National Institute of Technology, Durgapur – 713209, India |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.procs.2015.07.412 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Optimal Statistical Structure Validation of Brain Tumors Using Refractive Index |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10052 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9936000108718872 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Medical Image Segmentation Techniques |
| related_works | https://openalex.org/W4285411112, https://openalex.org/W2085033728, https://openalex.org/W2171299904, https://openalex.org/W4390494008, https://openalex.org/W2922442631, https://openalex.org/W2053596378, https://openalex.org/W2168523118, https://openalex.org/W2073639911, https://openalex.org/W2043988397, https://openalex.org/W1522196789 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2017 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1016/j.procs.2015.07.412 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S120348307 |
| best_oa_location.source.issn | 1877-0509 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1877-0509 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Procedia Computer Science |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Procedia Computer Science |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.procs.2015.07.412 |
| primary_location.id | doi:10.1016/j.procs.2015.07.412 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S120348307 |
| primary_location.source.issn | 1877-0509 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1877-0509 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Procedia Computer Science |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Procedia Computer Science |
| primary_location.landing_page_url | https://doi.org/10.1016/j.procs.2015.07.412 |
| publication_date | 2015-01-01 |
| publication_year | 2015 |
| referenced_works | https://openalex.org/W2102860796, https://openalex.org/W2128184986, https://openalex.org/W2078763422, https://openalex.org/W2141682734, https://openalex.org/W2129109731, https://openalex.org/W6681651645, https://openalex.org/W1966587288, https://openalex.org/W2044465660, https://openalex.org/W2145073242, https://openalex.org/W196541616, https://openalex.org/W1627054999, https://openalex.org/W2120336557, https://openalex.org/W262970172, https://openalex.org/W2073459066 |
| referenced_works_count | 14 |
| abstract_inverted_index.3 | 77 |
| abstract_inverted_index.a | 8, 27, 124, 134 |
| abstract_inverted_index.In | 39 |
| abstract_inverted_index.MR | 118 |
| abstract_inverted_index.RI | 128 |
| abstract_inverted_index.T2 | 119 |
| abstract_inverted_index.as | 73 |
| abstract_inverted_index.be | 26, 140 |
| abstract_inverted_index.in | 12, 133 |
| abstract_inverted_index.is | 5, 98, 109 |
| abstract_inverted_index.it | 138 |
| abstract_inverted_index.of | 15, 36, 50, 55, 66, 79, 94, 113, 127, 131 |
| abstract_inverted_index.on | 62, 111 |
| abstract_inverted_index.to | 25, 31, 139 |
| abstract_inverted_index.we | 42 |
| abstract_inverted_index.MRI | 4 |
| abstract_inverted_index.and | 34, 69, 84, 100 |
| abstract_inverted_index.are | 86, 103 |
| abstract_inverted_index.due | 30 |
| abstract_inverted_index.for | 47, 129 |
| abstract_inverted_index.old | 10 |
| abstract_inverted_index.per | 74 |
| abstract_inverted_index.set | 97 |
| abstract_inverted_index.the | 13, 32, 48, 52, 63, 89, 114, 117, 141 |
| abstract_inverted_index.Then | 92 |
| abstract_inverted_index.Till | 18 |
| abstract_inverted_index.both | 67 |
| abstract_inverted_index.date | 19 |
| abstract_inverted_index.each | 112 |
| abstract_inverted_index.from | 2, 88, 116, 123 |
| abstract_inverted_index.more | 6 |
| abstract_inverted_index.task | 29 |
| abstract_inverted_index.than | 7 |
| abstract_inverted_index.this | 40, 44, 95 |
| abstract_inverted_index.brain | 3, 21, 56 |
| abstract_inverted_index.exact | 53 |
| abstract_inverted_index.field | 14 |
| abstract_inverted_index.index | 60, 107 |
| abstract_inverted_index.kinds | 78 |
| abstract_inverted_index.study | 61 |
| abstract_inverted_index.time. | 121 |
| abstract_inverted_index.using | 58 |
| abstract_inverted_index.value | 126 |
| abstract_inverted_index.Tumour | 0 |
| abstract_inverted_index.decade | 9 |
| abstract_inverted_index.normal | 70 |
| abstract_inverted_index.paper, | 41 |
| abstract_inverted_index.pixels | 132 |
| abstract_inverted_index.survey | 76 |
| abstract_inverted_index.tumour | 22, 37, 57 |
| abstract_inverted_index.cluster | 136 |
| abstract_inverted_index.denotes | 137 |
| abstract_inverted_index.feature | 96 |
| abstract_inverted_index.growth. | 38 |
| abstract_inverted_index.happens | 24 |
| abstract_inverted_index.medical | 16 |
| abstract_inverted_index.namely, | 81 |
| abstract_inverted_index.present | 43 |
| abstract_inverted_index.problem | 11, 46 |
| abstract_inverted_index.purpose | 49 |
| abstract_inverted_index.region. | 143 |
| abstract_inverted_index.similar | 101 |
| abstract_inverted_index.analysis | 65, 108 |
| abstract_inverted_index.clusters | 115 |
| abstract_inverted_index.existing | 75 |
| abstract_inverted_index.features | 80, 102 |
| abstract_inverted_index.imaging. | 17 |
| abstract_inverted_index.location | 54 |
| abstract_inverted_index.majority | 130 |
| abstract_inverted_index.tissues. | 71 |
| abstract_inverted_index.tumorous | 68, 142 |
| abstract_inverted_index.variance | 33 |
| abstract_inverted_index.Deviation | 122 |
| abstract_inverted_index.automated | 20 |
| abstract_inverted_index.clustered | 104 |
| abstract_inverted_index.difficult | 28 |
| abstract_inverted_index.elements. | 91 |
| abstract_inverted_index.extracted | 87 |
| abstract_inverted_index.performed | 99, 110 |
| abstract_inverted_index.reduction | 93 |
| abstract_inverted_index.threshold | 125 |
| abstract_inverted_index.together. | 105 |
| abstract_inverted_index.Initially, | 72 |
| abstract_inverted_index.Refractive | 106 |
| abstract_inverted_index.complexity | 35 |
| abstract_inverted_index.particular | 135 |
| abstract_inverted_index.refractive | 59 |
| abstract_inverted_index.relaxation | 120 |
| abstract_inverted_index.structural | 64, 90 |
| abstract_inverted_index.determining | 51 |
| abstract_inverted_index.segmentation | 1, 23, 45 |
| abstract_inverted_index.symmetry-based | 85 |
| abstract_inverted_index.texture-based, | 83 |
| abstract_inverted_index.intensity-based, | 82 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.58244253 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |