Optimal Variable Clustering for High-Dimensional Matrix Valued Data Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2112.12909
Matrix valued data has become increasingly prevalent in many applications. Most of the existing clustering methods for this type of data are tailored to the mean model and do not account for the dependence structure of the features, which can be very informative, especially in high-dimensional settings or when mean information is not available. To extract the information from the dependence structure for clustering, we propose a new latent variable model for the features arranged in matrix form, with some unknown membership matrices representing the clusters for the rows and columns. Under this model, we further propose a class of hierarchical clustering algorithms using the difference of a weighted covariance matrix as the dissimilarity measure. Theoretically, we show that under mild conditions, our algorithm attains clustering consistency in the high-dimensional setting. While this consistency result holds for our algorithm with a broad class of weighted covariance matrices, the conditions for this result depend on the choice of the weight. To investigate how the weight affects the theoretical performance of our algorithm, we establish the minimax lower bound for clustering under our latent variable model in terms of some cluster separation metric. Given these results, we identify the optimal weight in the sense that using this weight guarantees our algorithm to be minimax rate-optimal. The practical implementation of our algorithm with the optimal weight is also discussed. Simulation studies show that our algorithm performs better than existing methods in terms of the adjusted Rand index (ARI). The method is applied to a genomic dataset and yields meaningful interpretations.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2112.12909
- https://arxiv.org/pdf/2112.12909
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4200630292
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4200630292Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2112.12909Digital Object Identifier
- Title
-
Optimal Variable Clustering for High-Dimensional Matrix Valued DataWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-12-24Full publication date if available
- Authors
-
Inbeom Lee, Siyi Deng, Yang NingList of authors in order
- Landing page
-
https://arxiv.org/abs/2112.12909Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2112.12909Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2112.12909Direct OA link when available
- Concepts
-
Cluster analysis, Minimax, Mathematics, Covariance, Covariance matrix, Matrix (chemical analysis), Consistency (knowledge bases), k-medians clustering, Metric (unit), Algorithm, CURE data clustering algorithm, Variable (mathematics), Latent class model, Correlation clustering, Computer science, Data mining, Mathematical optimization, Artificial intelligence, Statistics, Operations management, Economics, Materials science, Mathematical analysis, Composite materialTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4200630292 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2112.12909 |
| ids.doi | https://doi.org/10.48550/arxiv.2112.12909 |
| ids.openalex | https://openalex.org/W4200630292 |
| fwci | |
| type | preprint |
| title | Optimal Variable Clustering for High-Dimensional Matrix Valued Data |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10885 |
| topics[0].field.id | https://openalex.org/fields/13 |
| topics[0].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[0].score | 0.9782000184059143 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1312 |
| topics[0].subfield.display_name | Molecular Biology |
| topics[0].display_name | Gene expression and cancer classification |
| topics[1].id | https://openalex.org/T10057 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9764000177383423 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Face and Expression Recognition |
| topics[2].id | https://openalex.org/T10064 |
| topics[2].field.id | https://openalex.org/fields/31 |
| topics[2].field.display_name | Physics and Astronomy |
| topics[2].score | 0.9678000211715698 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3109 |
| topics[2].subfield.display_name | Statistical and Nonlinear Physics |
| topics[2].display_name | Complex Network Analysis Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C73555534 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7672079801559448 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q622825 |
| concepts[0].display_name | Cluster analysis |
| concepts[1].id | https://openalex.org/C149728462 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6471471190452576 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q751319 |
| concepts[1].display_name | Minimax |
| concepts[2].id | https://openalex.org/C33923547 |
| concepts[2].level | 0 |
| concepts[2].score | 0.531274676322937 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[2].display_name | Mathematics |
| concepts[3].id | https://openalex.org/C178650346 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5070374011993408 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q201984 |
| concepts[3].display_name | Covariance |
| concepts[4].id | https://openalex.org/C185142706 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5032798647880554 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1134404 |
| concepts[4].display_name | Covariance matrix |
| concepts[5].id | https://openalex.org/C106487976 |
| concepts[5].level | 2 |
| concepts[5].score | 0.49956274032592773 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q685816 |
| concepts[5].display_name | Matrix (chemical analysis) |
| concepts[6].id | https://openalex.org/C2776436953 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4681475758552551 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q5163215 |
| concepts[6].display_name | Consistency (knowledge bases) |
| concepts[7].id | https://openalex.org/C115328559 |
| concepts[7].level | 5 |
| concepts[7].score | 0.4623021185398102 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q4041956 |
| concepts[7].display_name | k-medians clustering |
| concepts[8].id | https://openalex.org/C176217482 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4581529200077057 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q860554 |
| concepts[8].display_name | Metric (unit) |
| concepts[9].id | https://openalex.org/C11413529 |
| concepts[9].level | 1 |
| concepts[9].score | 0.4340512752532959 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[9].display_name | Algorithm |
| concepts[10].id | https://openalex.org/C33704608 |
| concepts[10].level | 4 |
| concepts[10].score | 0.4326220750808716 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q5014717 |
| concepts[10].display_name | CURE data clustering algorithm |
| concepts[11].id | https://openalex.org/C182365436 |
| concepts[11].level | 2 |
| concepts[11].score | 0.4218655824661255 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q50701 |
| concepts[11].display_name | Variable (mathematics) |
| concepts[12].id | https://openalex.org/C70727504 |
| concepts[12].level | 2 |
| concepts[12].score | 0.4158574044704437 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1806878 |
| concepts[12].display_name | Latent class model |
| concepts[13].id | https://openalex.org/C94641424 |
| concepts[13].level | 3 |
| concepts[13].score | 0.40293988585472107 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q5172845 |
| concepts[13].display_name | Correlation clustering |
| concepts[14].id | https://openalex.org/C41008148 |
| concepts[14].level | 0 |
| concepts[14].score | 0.3980056047439575 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[14].display_name | Computer science |
| concepts[15].id | https://openalex.org/C124101348 |
| concepts[15].level | 1 |
| concepts[15].score | 0.3605673313140869 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[15].display_name | Data mining |
| concepts[16].id | https://openalex.org/C126255220 |
| concepts[16].level | 1 |
| concepts[16].score | 0.33229029178619385 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[16].display_name | Mathematical optimization |
| concepts[17].id | https://openalex.org/C154945302 |
| concepts[17].level | 1 |
| concepts[17].score | 0.2285556197166443 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[17].display_name | Artificial intelligence |
| concepts[18].id | https://openalex.org/C105795698 |
| concepts[18].level | 1 |
| concepts[18].score | 0.17412850260734558 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[18].display_name | Statistics |
| concepts[19].id | https://openalex.org/C21547014 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q1423657 |
| concepts[19].display_name | Operations management |
| concepts[20].id | https://openalex.org/C162324750 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[20].display_name | Economics |
| concepts[21].id | https://openalex.org/C192562407 |
| concepts[21].level | 0 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[21].display_name | Materials science |
| concepts[22].id | https://openalex.org/C134306372 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[22].display_name | Mathematical analysis |
| concepts[23].id | https://openalex.org/C159985019 |
| concepts[23].level | 1 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q181790 |
| concepts[23].display_name | Composite material |
| keywords[0].id | https://openalex.org/keywords/cluster-analysis |
| keywords[0].score | 0.7672079801559448 |
| keywords[0].display_name | Cluster analysis |
| keywords[1].id | https://openalex.org/keywords/minimax |
| keywords[1].score | 0.6471471190452576 |
| keywords[1].display_name | Minimax |
| keywords[2].id | https://openalex.org/keywords/mathematics |
| keywords[2].score | 0.531274676322937 |
| keywords[2].display_name | Mathematics |
| keywords[3].id | https://openalex.org/keywords/covariance |
| keywords[3].score | 0.5070374011993408 |
| keywords[3].display_name | Covariance |
| keywords[4].id | https://openalex.org/keywords/covariance-matrix |
| keywords[4].score | 0.5032798647880554 |
| keywords[4].display_name | Covariance matrix |
| keywords[5].id | https://openalex.org/keywords/matrix |
| keywords[5].score | 0.49956274032592773 |
| keywords[5].display_name | Matrix (chemical analysis) |
| keywords[6].id | https://openalex.org/keywords/consistency |
| keywords[6].score | 0.4681475758552551 |
| keywords[6].display_name | Consistency (knowledge bases) |
| keywords[7].id | https://openalex.org/keywords/k-medians-clustering |
| keywords[7].score | 0.4623021185398102 |
| keywords[7].display_name | k-medians clustering |
| keywords[8].id | https://openalex.org/keywords/metric |
| keywords[8].score | 0.4581529200077057 |
| keywords[8].display_name | Metric (unit) |
| keywords[9].id | https://openalex.org/keywords/algorithm |
| keywords[9].score | 0.4340512752532959 |
| keywords[9].display_name | Algorithm |
| keywords[10].id | https://openalex.org/keywords/cure-data-clustering-algorithm |
| keywords[10].score | 0.4326220750808716 |
| keywords[10].display_name | CURE data clustering algorithm |
| keywords[11].id | https://openalex.org/keywords/variable |
| keywords[11].score | 0.4218655824661255 |
| keywords[11].display_name | Variable (mathematics) |
| keywords[12].id | https://openalex.org/keywords/latent-class-model |
| keywords[12].score | 0.4158574044704437 |
| keywords[12].display_name | Latent class model |
| keywords[13].id | https://openalex.org/keywords/correlation-clustering |
| keywords[13].score | 0.40293988585472107 |
| keywords[13].display_name | Correlation clustering |
| keywords[14].id | https://openalex.org/keywords/computer-science |
| keywords[14].score | 0.3980056047439575 |
| keywords[14].display_name | Computer science |
| keywords[15].id | https://openalex.org/keywords/data-mining |
| keywords[15].score | 0.3605673313140869 |
| keywords[15].display_name | Data mining |
| keywords[16].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[16].score | 0.33229029178619385 |
| keywords[16].display_name | Mathematical optimization |
| keywords[17].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[17].score | 0.2285556197166443 |
| keywords[17].display_name | Artificial intelligence |
| keywords[18].id | https://openalex.org/keywords/statistics |
| keywords[18].score | 0.17412850260734558 |
| keywords[18].display_name | Statistics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2112.12909 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://arxiv.org/pdf/2112.12909 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2112.12909 |
| locations[1].id | doi:10.48550/arxiv.2112.12909 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2112.12909 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5102750849 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6469-772X |
| authorships[0].author.display_name | Inbeom Lee |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Lee, Inbeom |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5004682601 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Siyi Deng |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Deng, Siyi |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5070406375 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6877-9231 |
| authorships[2].author.display_name | Yang Ning |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Ning, Yang |
| authorships[2].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2112.12909 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Optimal Variable Clustering for High-Dimensional Matrix Valued Data |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10885 |
| primary_topic.field.id | https://openalex.org/fields/13 |
| primary_topic.field.display_name | Biochemistry, Genetics and Molecular Biology |
| primary_topic.score | 0.9782000184059143 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1312 |
| primary_topic.subfield.display_name | Molecular Biology |
| primary_topic.display_name | Gene expression and cancer classification |
| related_works | https://openalex.org/W2393816671, https://openalex.org/W2376412895, https://openalex.org/W2367377022, https://openalex.org/W2293953271, https://openalex.org/W1547125942, https://openalex.org/W3113302101, https://openalex.org/W2389804866, https://openalex.org/W2188840951, https://openalex.org/W3092684173, https://openalex.org/W4285809405 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2112.12909 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2112.12909 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2112.12909 |
| primary_location.id | pmh:oai:arXiv.org:2112.12909 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://arxiv.org/pdf/2112.12909 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2112.12909 |
| publication_date | 2021-12-24 |
| publication_year | 2021 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 66, 97, 107, 140, 250 |
| abstract_inverted_index.To | 54, 159 |
| abstract_inverted_index.as | 111 |
| abstract_inverted_index.be | 40, 210 |
| abstract_inverted_index.do | 28 |
| abstract_inverted_index.in | 7, 44, 75, 127, 184, 199, 237 |
| abstract_inverted_index.is | 51, 223, 247 |
| abstract_inverted_index.of | 11, 19, 35, 99, 106, 143, 156, 168, 186, 216, 239 |
| abstract_inverted_index.on | 153 |
| abstract_inverted_index.or | 47 |
| abstract_inverted_index.to | 23, 209, 249 |
| abstract_inverted_index.we | 64, 94, 116, 171, 194 |
| abstract_inverted_index.The | 213, 245 |
| abstract_inverted_index.and | 27, 89, 253 |
| abstract_inverted_index.are | 21 |
| abstract_inverted_index.can | 39 |
| abstract_inverted_index.for | 16, 31, 62, 71, 86, 136, 149, 177 |
| abstract_inverted_index.has | 3 |
| abstract_inverted_index.how | 161 |
| abstract_inverted_index.new | 67 |
| abstract_inverted_index.not | 29, 52 |
| abstract_inverted_index.our | 122, 137, 169, 180, 207, 217, 230 |
| abstract_inverted_index.the | 12, 24, 32, 36, 56, 59, 72, 84, 87, 104, 112, 128, 147, 154, 157, 162, 165, 173, 196, 200, 220, 240 |
| abstract_inverted_index.Most | 10 |
| abstract_inverted_index.Rand | 242 |
| abstract_inverted_index.also | 224 |
| abstract_inverted_index.data | 2, 20 |
| abstract_inverted_index.from | 58 |
| abstract_inverted_index.many | 8 |
| abstract_inverted_index.mean | 25, 49 |
| abstract_inverted_index.mild | 120 |
| abstract_inverted_index.rows | 88 |
| abstract_inverted_index.show | 117, 228 |
| abstract_inverted_index.some | 79, 187 |
| abstract_inverted_index.than | 234 |
| abstract_inverted_index.that | 118, 202, 229 |
| abstract_inverted_index.this | 17, 92, 132, 150, 204 |
| abstract_inverted_index.type | 18 |
| abstract_inverted_index.very | 41 |
| abstract_inverted_index.when | 48 |
| abstract_inverted_index.with | 78, 139, 219 |
| abstract_inverted_index.Given | 191 |
| abstract_inverted_index.Under | 91 |
| abstract_inverted_index.While | 131 |
| abstract_inverted_index.bound | 176 |
| abstract_inverted_index.broad | 141 |
| abstract_inverted_index.class | 98, 142 |
| abstract_inverted_index.form, | 77 |
| abstract_inverted_index.holds | 135 |
| abstract_inverted_index.index | 243 |
| abstract_inverted_index.lower | 175 |
| abstract_inverted_index.model | 26, 70, 183 |
| abstract_inverted_index.sense | 201 |
| abstract_inverted_index.terms | 185, 238 |
| abstract_inverted_index.these | 192 |
| abstract_inverted_index.under | 119, 179 |
| abstract_inverted_index.using | 103, 203 |
| abstract_inverted_index.which | 38 |
| abstract_inverted_index.(ARI). | 244 |
| abstract_inverted_index.Matrix | 0 |
| abstract_inverted_index.become | 4 |
| abstract_inverted_index.better | 233 |
| abstract_inverted_index.choice | 155 |
| abstract_inverted_index.depend | 152 |
| abstract_inverted_index.latent | 68, 181 |
| abstract_inverted_index.matrix | 76, 110 |
| abstract_inverted_index.method | 246 |
| abstract_inverted_index.model, | 93 |
| abstract_inverted_index.result | 134, 151 |
| abstract_inverted_index.valued | 1 |
| abstract_inverted_index.weight | 163, 198, 205, 222 |
| abstract_inverted_index.yields | 254 |
| abstract_inverted_index.account | 30 |
| abstract_inverted_index.affects | 164 |
| abstract_inverted_index.applied | 248 |
| abstract_inverted_index.attains | 124 |
| abstract_inverted_index.cluster | 188 |
| abstract_inverted_index.dataset | 252 |
| abstract_inverted_index.extract | 55 |
| abstract_inverted_index.further | 95 |
| abstract_inverted_index.genomic | 251 |
| abstract_inverted_index.methods | 15, 236 |
| abstract_inverted_index.metric. | 190 |
| abstract_inverted_index.minimax | 174, 211 |
| abstract_inverted_index.optimal | 197, 221 |
| abstract_inverted_index.propose | 65, 96 |
| abstract_inverted_index.studies | 227 |
| abstract_inverted_index.unknown | 80 |
| abstract_inverted_index.weight. | 158 |
| abstract_inverted_index.adjusted | 241 |
| abstract_inverted_index.arranged | 74 |
| abstract_inverted_index.clusters | 85 |
| abstract_inverted_index.columns. | 90 |
| abstract_inverted_index.existing | 13, 235 |
| abstract_inverted_index.features | 73 |
| abstract_inverted_index.identify | 195 |
| abstract_inverted_index.matrices | 82 |
| abstract_inverted_index.measure. | 114 |
| abstract_inverted_index.performs | 232 |
| abstract_inverted_index.results, | 193 |
| abstract_inverted_index.setting. | 130 |
| abstract_inverted_index.settings | 46 |
| abstract_inverted_index.tailored | 22 |
| abstract_inverted_index.variable | 69, 182 |
| abstract_inverted_index.weighted | 108, 144 |
| abstract_inverted_index.algorithm | 123, 138, 208, 218, 231 |
| abstract_inverted_index.establish | 172 |
| abstract_inverted_index.features, | 37 |
| abstract_inverted_index.matrices, | 146 |
| abstract_inverted_index.practical | 214 |
| abstract_inverted_index.prevalent | 6 |
| abstract_inverted_index.structure | 34, 61 |
| abstract_inverted_index.Simulation | 226 |
| abstract_inverted_index.algorithm, | 170 |
| abstract_inverted_index.algorithms | 102 |
| abstract_inverted_index.available. | 53 |
| abstract_inverted_index.clustering | 14, 101, 125, 178 |
| abstract_inverted_index.conditions | 148 |
| abstract_inverted_index.covariance | 109, 145 |
| abstract_inverted_index.dependence | 33, 60 |
| abstract_inverted_index.difference | 105 |
| abstract_inverted_index.discussed. | 225 |
| abstract_inverted_index.especially | 43 |
| abstract_inverted_index.guarantees | 206 |
| abstract_inverted_index.meaningful | 255 |
| abstract_inverted_index.membership | 81 |
| abstract_inverted_index.separation | 189 |
| abstract_inverted_index.clustering, | 63 |
| abstract_inverted_index.conditions, | 121 |
| abstract_inverted_index.consistency | 126, 133 |
| abstract_inverted_index.information | 50, 57 |
| abstract_inverted_index.investigate | 160 |
| abstract_inverted_index.performance | 167 |
| abstract_inverted_index.theoretical | 166 |
| abstract_inverted_index.hierarchical | 100 |
| abstract_inverted_index.increasingly | 5 |
| abstract_inverted_index.informative, | 42 |
| abstract_inverted_index.representing | 83 |
| abstract_inverted_index.applications. | 9 |
| abstract_inverted_index.dissimilarity | 113 |
| abstract_inverted_index.rate-optimal. | 212 |
| abstract_inverted_index.Theoretically, | 115 |
| abstract_inverted_index.implementation | 215 |
| abstract_inverted_index.high-dimensional | 45, 129 |
| abstract_inverted_index.interpretations. | 256 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |