Optimisation of low and ultra-low dose scanning protocols for ultra-extended field of view PET in a real-world clinical setting Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1186/s40644-025-00823-x
True total-body and extended axial field-of-view (AFOV) PET/CT with 1m or more of body coverage are now commercially available and dramatically increase system sensitivity over conventional AFOV PET/CT. The Siemens Biograph Vision Quadra (Quadra), with an AFOV of 106cm, potentially allows use of significantly lower administered radiopharmaceuticals as well as reduced scan times. The aim of this study was to optimise acquisition protocols for routine clinical imaging with FDG on the Quadra the prioritisation of reduced activity given physical infrastructure constraints in our facility. Low-dose (1 MBq/kg) and ultra-low dose (0.5 MBq/g) cohorts, each of 20 patients were scanned in a single bed position for 10 and 15 min respectively with list-mode data acquisition. These data were then reconstructed simulating progressively shorter acquisition times down to 30 s and 1 min, respectively and then reviewed by 2 experienced PET readers who selected the shortest optimal and minimal acquisition durations based on personal preferences. Quantitative analysis was also performed of image noise to assess how this correlated with qualitative preferences. At the consensus minimum acquisition durations at both dosing levels, the coefficient of variance in the liver as a measure of image noise was 10% or less and there was minimal reduction in this measure between the optimal and longest acquisition durations. These data support the reduction in both administered activity and scan acquisition times for routine clinical FDG PET/CT on the Quadra providing efficient workflows and low radiation doses to staff and patients, while achieving high quality images.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1186/s40644-025-00823-x
- OA Status
- gold
- Cited By
- 2
- References
- 21
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4406938678
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4406938678Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1186/s40644-025-00823-xDigital Object Identifier
- Title
-
Optimisation of low and ultra-low dose scanning protocols for ultra-extended field of view PET in a real-world clinical settingWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-29Full publication date if available
- Authors
-
Johanna Ingbritsen, Jason Callahan, Hugh Morgan, Melissa Munro, Robert E. Ware, Rodney J. HicksList of authors in order
- Landing page
-
https://doi.org/10.1186/s40644-025-00823-xPublisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1186/s40644-025-00823-xDirect OA link when available
- Concepts
-
Medicine, Nuclear medicine, Data acquisition, Workflow, Noise (video), Medical physics, Computer science, Artificial intelligence, Image (mathematics), Database, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2Per-year citation counts (last 5 years)
- References (count)
-
21Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4406938678 |
|---|---|
| doi | https://doi.org/10.1186/s40644-025-00823-x |
| ids.doi | https://doi.org/10.1186/s40644-025-00823-x |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/39881380 |
| ids.openalex | https://openalex.org/W4406938678 |
| fwci | 9.2679325 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | Q000379 |
| mesh[1].descriptor_ui | D000072078 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | methods |
| mesh[1].descriptor_name | Positron Emission Tomography Computed Tomography |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D011829 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Radiation Dosage |
| mesh[3].qualifier_ui | Q000008 |
| mesh[3].descriptor_ui | D019275 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | administration & dosage |
| mesh[3].descriptor_name | Radiopharmaceuticals |
| mesh[4].qualifier_ui | Q000008 |
| mesh[4].descriptor_ui | D019788 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | administration & dosage |
| mesh[4].descriptor_name | Fluorodeoxyglucose F18 |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D005260 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Female |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D008297 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Male |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D008875 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Middle Aged |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D000368 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Aged |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D006801 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Humans |
| mesh[10].qualifier_ui | Q000379 |
| mesh[10].descriptor_ui | D000072078 |
| mesh[10].is_major_topic | True |
| mesh[10].qualifier_name | methods |
| mesh[10].descriptor_name | Positron Emission Tomography Computed Tomography |
| mesh[11].qualifier_ui | Q000008 |
| mesh[11].descriptor_ui | D019788 |
| mesh[11].is_major_topic | True |
| mesh[11].qualifier_name | administration & dosage |
| mesh[11].descriptor_name | Fluorodeoxyglucose F18 |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D011829 |
| mesh[12].is_major_topic | True |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Radiation Dosage |
| mesh[13].qualifier_ui | Q000008 |
| mesh[13].descriptor_ui | D019275 |
| mesh[13].is_major_topic | True |
| mesh[13].qualifier_name | administration & dosage |
| mesh[13].descriptor_name | Radiopharmaceuticals |
| mesh[14].qualifier_ui | |
| mesh[14].descriptor_ui | D008297 |
| mesh[14].is_major_topic | False |
| mesh[14].qualifier_name | |
| mesh[14].descriptor_name | Male |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D005260 |
| mesh[15].is_major_topic | False |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | Female |
| mesh[16].qualifier_ui | |
| mesh[16].descriptor_ui | D008875 |
| mesh[16].is_major_topic | False |
| mesh[16].qualifier_name | |
| mesh[16].descriptor_name | Middle Aged |
| mesh[17].qualifier_ui | |
| mesh[17].descriptor_ui | D000368 |
| mesh[17].is_major_topic | False |
| mesh[17].qualifier_name | |
| mesh[17].descriptor_name | Aged |
| mesh[18].qualifier_ui | Q000379 |
| mesh[18].descriptor_ui | D007091 |
| mesh[18].is_major_topic | False |
| mesh[18].qualifier_name | methods |
| mesh[18].descriptor_name | Image Processing, Computer-Assisted |
| mesh[19].qualifier_ui | |
| mesh[19].descriptor_ui | D000328 |
| mesh[19].is_major_topic | False |
| mesh[19].qualifier_name | |
| mesh[19].descriptor_name | Adult |
| mesh[20].qualifier_ui | |
| mesh[20].descriptor_ui | D006801 |
| mesh[20].is_major_topic | False |
| mesh[20].qualifier_name | |
| mesh[20].descriptor_name | Humans |
| mesh[21].qualifier_ui | Q000379 |
| mesh[21].descriptor_ui | D000072078 |
| mesh[21].is_major_topic | True |
| mesh[21].qualifier_name | methods |
| mesh[21].descriptor_name | Positron Emission Tomography Computed Tomography |
| mesh[22].qualifier_ui | Q000008 |
| mesh[22].descriptor_ui | D019788 |
| mesh[22].is_major_topic | True |
| mesh[22].qualifier_name | administration & dosage |
| mesh[22].descriptor_name | Fluorodeoxyglucose F18 |
| mesh[23].qualifier_ui | |
| mesh[23].descriptor_ui | D011829 |
| mesh[23].is_major_topic | True |
| mesh[23].qualifier_name | |
| mesh[23].descriptor_name | Radiation Dosage |
| mesh[24].qualifier_ui | Q000008 |
| mesh[24].descriptor_ui | D019275 |
| mesh[24].is_major_topic | True |
| mesh[24].qualifier_name | administration & dosage |
| mesh[24].descriptor_name | Radiopharmaceuticals |
| mesh[25].qualifier_ui | |
| mesh[25].descriptor_ui | D008297 |
| mesh[25].is_major_topic | False |
| mesh[25].qualifier_name | |
| mesh[25].descriptor_name | Male |
| mesh[26].qualifier_ui | |
| mesh[26].descriptor_ui | D005260 |
| mesh[26].is_major_topic | False |
| mesh[26].qualifier_name | |
| mesh[26].descriptor_name | Female |
| mesh[27].qualifier_ui | |
| mesh[27].descriptor_ui | D008875 |
| mesh[27].is_major_topic | False |
| mesh[27].qualifier_name | |
| mesh[27].descriptor_name | Middle Aged |
| mesh[28].qualifier_ui | |
| mesh[28].descriptor_ui | D000368 |
| mesh[28].is_major_topic | False |
| mesh[28].qualifier_name | |
| mesh[28].descriptor_name | Aged |
| mesh[29].qualifier_ui | Q000379 |
| mesh[29].descriptor_ui | D007091 |
| mesh[29].is_major_topic | False |
| mesh[29].qualifier_name | methods |
| mesh[29].descriptor_name | Image Processing, Computer-Assisted |
| mesh[30].qualifier_ui | |
| mesh[30].descriptor_ui | D000328 |
| mesh[30].is_major_topic | False |
| mesh[30].qualifier_name | |
| mesh[30].descriptor_name | Adult |
| mesh[31].qualifier_ui | |
| mesh[31].descriptor_ui | D006801 |
| mesh[31].is_major_topic | False |
| mesh[31].qualifier_name | |
| mesh[31].descriptor_name | Humans |
| mesh[32].qualifier_ui | Q000379 |
| mesh[32].descriptor_ui | D000072078 |
| mesh[32].is_major_topic | True |
| mesh[32].qualifier_name | methods |
| mesh[32].descriptor_name | Positron Emission Tomography Computed Tomography |
| mesh[33].qualifier_ui | Q000008 |
| mesh[33].descriptor_ui | D019788 |
| mesh[33].is_major_topic | True |
| mesh[33].qualifier_name | administration & dosage |
| mesh[33].descriptor_name | Fluorodeoxyglucose F18 |
| mesh[34].qualifier_ui | |
| mesh[34].descriptor_ui | D011829 |
| mesh[34].is_major_topic | True |
| mesh[34].qualifier_name | |
| mesh[34].descriptor_name | Radiation Dosage |
| mesh[35].qualifier_ui | Q000008 |
| mesh[35].descriptor_ui | D019275 |
| mesh[35].is_major_topic | True |
| mesh[35].qualifier_name | administration & dosage |
| mesh[35].descriptor_name | Radiopharmaceuticals |
| mesh[36].qualifier_ui | |
| mesh[36].descriptor_ui | D008297 |
| mesh[36].is_major_topic | False |
| mesh[36].qualifier_name | |
| mesh[36].descriptor_name | Male |
| mesh[37].qualifier_ui | |
| mesh[37].descriptor_ui | D005260 |
| mesh[37].is_major_topic | False |
| mesh[37].qualifier_name | |
| mesh[37].descriptor_name | Female |
| mesh[38].qualifier_ui | |
| mesh[38].descriptor_ui | D008875 |
| mesh[38].is_major_topic | False |
| mesh[38].qualifier_name | |
| mesh[38].descriptor_name | Middle Aged |
| mesh[39].qualifier_ui | |
| mesh[39].descriptor_ui | D000368 |
| mesh[39].is_major_topic | False |
| mesh[39].qualifier_name | |
| mesh[39].descriptor_name | Aged |
| mesh[40].qualifier_ui | Q000379 |
| mesh[40].descriptor_ui | D007091 |
| mesh[40].is_major_topic | False |
| mesh[40].qualifier_name | methods |
| mesh[40].descriptor_name | Image Processing, Computer-Assisted |
| mesh[41].qualifier_ui | |
| mesh[41].descriptor_ui | D000328 |
| mesh[41].is_major_topic | False |
| mesh[41].qualifier_name | |
| mesh[41].descriptor_name | Adult |
| mesh[42].qualifier_ui | |
| mesh[42].descriptor_ui | D006801 |
| mesh[42].is_major_topic | False |
| mesh[42].qualifier_name | |
| mesh[42].descriptor_name | Humans |
| mesh[43].qualifier_ui | Q000379 |
| mesh[43].descriptor_ui | D000072078 |
| mesh[43].is_major_topic | True |
| mesh[43].qualifier_name | methods |
| mesh[43].descriptor_name | Positron Emission Tomography Computed Tomography |
| mesh[44].qualifier_ui | Q000008 |
| mesh[44].descriptor_ui | D019788 |
| mesh[44].is_major_topic | True |
| mesh[44].qualifier_name | administration & dosage |
| mesh[44].descriptor_name | Fluorodeoxyglucose F18 |
| mesh[45].qualifier_ui | |
| mesh[45].descriptor_ui | D011829 |
| mesh[45].is_major_topic | True |
| mesh[45].qualifier_name | |
| mesh[45].descriptor_name | Radiation Dosage |
| mesh[46].qualifier_ui | Q000008 |
| mesh[46].descriptor_ui | D019275 |
| mesh[46].is_major_topic | True |
| mesh[46].qualifier_name | administration & dosage |
| mesh[46].descriptor_name | Radiopharmaceuticals |
| mesh[47].qualifier_ui | |
| mesh[47].descriptor_ui | D008297 |
| mesh[47].is_major_topic | False |
| mesh[47].qualifier_name | |
| mesh[47].descriptor_name | Male |
| mesh[48].qualifier_ui | |
| mesh[48].descriptor_ui | D005260 |
| mesh[48].is_major_topic | False |
| mesh[48].qualifier_name | |
| mesh[48].descriptor_name | Female |
| mesh[49].qualifier_ui | |
| mesh[49].descriptor_ui | D008875 |
| mesh[49].is_major_topic | False |
| mesh[49].qualifier_name | |
| mesh[49].descriptor_name | Middle Aged |
| type | article |
| title | Optimisation of low and ultra-low dose scanning protocols for ultra-extended field of view PET in a real-world clinical setting |
| biblio.issue | 1 |
| biblio.volume | 25 |
| biblio.last_page | 7 |
| biblio.first_page | 7 |
| topics[0].id | https://openalex.org/T10522 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2741 |
| topics[0].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[0].display_name | Medical Imaging Techniques and Applications |
| topics[1].id | https://openalex.org/T10358 |
| topics[1].field.id | https://openalex.org/fields/31 |
| topics[1].field.display_name | Physics and Astronomy |
| topics[1].score | 0.9994000196456909 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3108 |
| topics[1].subfield.display_name | Radiation |
| topics[1].display_name | Advanced Radiotherapy Techniques |
| topics[2].id | https://openalex.org/T12386 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9994000196456909 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2204 |
| topics[2].subfield.display_name | Biomedical Engineering |
| topics[2].display_name | Advanced X-ray and CT Imaging |
| is_xpac | False |
| apc_list.value | 1690 |
| apc_list.currency | GBP |
| apc_list.value_usd | 2072 |
| apc_paid.value | 1690 |
| apc_paid.currency | GBP |
| apc_paid.value_usd | 2072 |
| concepts[0].id | https://openalex.org/C71924100 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6649056673049927 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[0].display_name | Medicine |
| concepts[1].id | https://openalex.org/C2989005 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6332186460494995 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q214963 |
| concepts[1].display_name | Nuclear medicine |
| concepts[2].id | https://openalex.org/C163985040 |
| concepts[2].level | 2 |
| concepts[2].score | 0.4769541025161743 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1172399 |
| concepts[2].display_name | Data acquisition |
| concepts[3].id | https://openalex.org/C177212765 |
| concepts[3].level | 2 |
| concepts[3].score | 0.42864862084388733 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q627335 |
| concepts[3].display_name | Workflow |
| concepts[4].id | https://openalex.org/C99498987 |
| concepts[4].level | 3 |
| concepts[4].score | 0.42269569635391235 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2210247 |
| concepts[4].display_name | Noise (video) |
| concepts[5].id | https://openalex.org/C19527891 |
| concepts[5].level | 1 |
| concepts[5].score | 0.40629321336746216 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1120908 |
| concepts[5].display_name | Medical physics |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.3365629315376282 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.30010080337524414 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C115961682 |
| concepts[8].level | 2 |
| concepts[8].score | 0.09030342102050781 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[8].display_name | Image (mathematics) |
| concepts[9].id | https://openalex.org/C77088390 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q8513 |
| concepts[9].display_name | Database |
| concepts[10].id | https://openalex.org/C111919701 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[10].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/medicine |
| keywords[0].score | 0.6649056673049927 |
| keywords[0].display_name | Medicine |
| keywords[1].id | https://openalex.org/keywords/nuclear-medicine |
| keywords[1].score | 0.6332186460494995 |
| keywords[1].display_name | Nuclear medicine |
| keywords[2].id | https://openalex.org/keywords/data-acquisition |
| keywords[2].score | 0.4769541025161743 |
| keywords[2].display_name | Data acquisition |
| keywords[3].id | https://openalex.org/keywords/workflow |
| keywords[3].score | 0.42864862084388733 |
| keywords[3].display_name | Workflow |
| keywords[4].id | https://openalex.org/keywords/noise |
| keywords[4].score | 0.42269569635391235 |
| keywords[4].display_name | Noise (video) |
| keywords[5].id | https://openalex.org/keywords/medical-physics |
| keywords[5].score | 0.40629321336746216 |
| keywords[5].display_name | Medical physics |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.3365629315376282 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.30010080337524414 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/image |
| keywords[8].score | 0.09030342102050781 |
| keywords[8].display_name | Image (mathematics) |
| language | en |
| locations[0].id | doi:10.1186/s40644-025-00823-x |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S14818408 |
| locations[0].source.issn | 1470-7330, 1740-5025 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1470-7330 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Cancer Imaging |
| locations[0].source.host_organization | https://openalex.org/P4310320256 |
| locations[0].source.host_organization_name | BioMed Central |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320256, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | BioMed Central, Springer Nature |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Cancer Imaging |
| locations[0].landing_page_url | https://doi.org/10.1186/s40644-025-00823-x |
| locations[1].id | pmid:39881380 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Cancer imaging : the official publication of the International Cancer Imaging Society |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/39881380 |
| locations[2].id | pmh:oai:doaj.org/article:8b6ee5c25f2842bf9e1305046afeec62 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Cancer Imaging, Vol 25, Iss 1, Pp 1-8 (2025) |
| locations[2].landing_page_url | https://doaj.org/article/8b6ee5c25f2842bf9e1305046afeec62 |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:11780987 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Cancer Imaging |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11780987 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5092364963 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Johanna Ingbritsen |
| authorships[0].affiliations[0].raw_affiliation_string | Melbourne Theranostic Innovation Centre, Level 8, 14-20 Blackwood St, North Melbourne, VIC, 3051, Australia |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Johanna Ingbritsen |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Melbourne Theranostic Innovation Centre, Level 8, 14-20 Blackwood St, North Melbourne, VIC, 3051, Australia |
| authorships[1].author.id | https://openalex.org/A5069938479 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-8957-2560 |
| authorships[1].author.display_name | Jason Callahan |
| authorships[1].affiliations[0].raw_affiliation_string | Melbourne Theranostic Innovation Centre, Level 8, 14-20 Blackwood St, North Melbourne, VIC, 3051, Australia |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jason Callahan |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Melbourne Theranostic Innovation Centre, Level 8, 14-20 Blackwood St, North Melbourne, VIC, 3051, Australia |
| authorships[2].author.id | https://openalex.org/A5069053970 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-3236-0214 |
| authorships[2].author.display_name | Hugh Morgan |
| authorships[2].affiliations[0].raw_affiliation_string | Melbourne Theranostic Innovation Centre, Level 8, 14-20 Blackwood St, North Melbourne, VIC, 3051, Australia |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Hugh Morgan |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Melbourne Theranostic Innovation Centre, Level 8, 14-20 Blackwood St, North Melbourne, VIC, 3051, Australia |
| authorships[3].author.id | https://openalex.org/A5113329201 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Melissa Munro |
| authorships[3].affiliations[0].raw_affiliation_string | Melbourne Theranostic Innovation Centre, Level 8, 14-20 Blackwood St, North Melbourne, VIC, 3051, Australia |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Melissa Munro |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Melbourne Theranostic Innovation Centre, Level 8, 14-20 Blackwood St, North Melbourne, VIC, 3051, Australia |
| authorships[4].author.id | https://openalex.org/A5103841991 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Robert E. Ware |
| authorships[4].affiliations[0].raw_affiliation_string | Melbourne Theranostic Innovation Centre, Level 8, 14-20 Blackwood St, North Melbourne, VIC, 3051, Australia |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Robert E. Ware |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Melbourne Theranostic Innovation Centre, Level 8, 14-20 Blackwood St, North Melbourne, VIC, 3051, Australia |
| authorships[5].author.id | https://openalex.org/A5060586557 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-0758-0824 |
| authorships[5].author.display_name | Rodney J. Hicks |
| authorships[5].countries | AU |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I165779595, https://openalex.org/I4210087110 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Medicine, The University of Melbourne, St Vincent's Hospital, Melbourne, VIC, Australia |
| authorships[5].institutions[0].id | https://openalex.org/I4210087110 |
| authorships[5].institutions[0].ror | https://ror.org/001kjn539 |
| authorships[5].institutions[0].type | healthcare |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210087110, https://openalex.org/I4210098850 |
| authorships[5].institutions[0].country_code | AU |
| authorships[5].institutions[0].display_name | St Vincent's Hospital Melbourne |
| authorships[5].institutions[1].id | https://openalex.org/I165779595 |
| authorships[5].institutions[1].ror | https://ror.org/01ej9dk98 |
| authorships[5].institutions[1].type | education |
| authorships[5].institutions[1].lineage | https://openalex.org/I165779595 |
| authorships[5].institutions[1].country_code | AU |
| authorships[5].institutions[1].display_name | The University of Melbourne |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Rodney J. Hicks |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Medicine, The University of Melbourne, St Vincent's Hospital, Melbourne, VIC, Australia |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1186/s40644-025-00823-x |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Optimisation of low and ultra-low dose scanning protocols for ultra-extended field of view PET in a real-world clinical setting |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-23T05:10:03.516525 |
| primary_topic.id | https://openalex.org/T10522 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2741 |
| primary_topic.subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| primary_topic.display_name | Medical Imaging Techniques and Applications |
| related_works | https://openalex.org/W1981780420, https://openalex.org/W2182707996, https://openalex.org/W45233828, https://openalex.org/W2964988449, https://openalex.org/W2397952901, https://openalex.org/W2029380707, https://openalex.org/W188202134, https://openalex.org/W4255934811, https://openalex.org/W2465382974, https://openalex.org/W2010229520 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1186/s40644-025-00823-x |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S14818408 |
| best_oa_location.source.issn | 1470-7330, 1740-5025 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1470-7330 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Cancer Imaging |
| best_oa_location.source.host_organization | https://openalex.org/P4310320256 |
| best_oa_location.source.host_organization_name | BioMed Central |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320256, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | BioMed Central, Springer Nature |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Cancer Imaging |
| best_oa_location.landing_page_url | https://doi.org/10.1186/s40644-025-00823-x |
| primary_location.id | doi:10.1186/s40644-025-00823-x |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S14818408 |
| primary_location.source.issn | 1470-7330, 1740-5025 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1470-7330 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Cancer Imaging |
| primary_location.source.host_organization | https://openalex.org/P4310320256 |
| primary_location.source.host_organization_name | BioMed Central |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320256, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | BioMed Central, Springer Nature |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Cancer Imaging |
| primary_location.landing_page_url | https://doi.org/10.1186/s40644-025-00823-x |
| publication_date | 2025-01-29 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4321331731, https://openalex.org/W2083309318, https://openalex.org/W3215464975, https://openalex.org/W3036117850, https://openalex.org/W2596649560, https://openalex.org/W3185601680, https://openalex.org/W3090317854, https://openalex.org/W3166621303, https://openalex.org/W3147126934, https://openalex.org/W2914020168, https://openalex.org/W4387909534, https://openalex.org/W3206336448, https://openalex.org/W4321496649, https://openalex.org/W4324020754, https://openalex.org/W4210920384, https://openalex.org/W3031801765, https://openalex.org/W4294970373, https://openalex.org/W4398783087, https://openalex.org/W2991798621, https://openalex.org/W4283801032, https://openalex.org/W4224311558 |
| referenced_works_count | 21 |
| abstract_inverted_index.1 | 130 |
| abstract_inverted_index.2 | 137 |
| abstract_inverted_index.a | 101, 188 |
| abstract_inverted_index.s | 128 |
| abstract_inverted_index.(1 | 86 |
| abstract_inverted_index.10 | 106 |
| abstract_inverted_index.15 | 108 |
| abstract_inverted_index.1m | 10 |
| abstract_inverted_index.20 | 96 |
| abstract_inverted_index.30 | 127 |
| abstract_inverted_index.At | 170 |
| abstract_inverted_index.an | 36 |
| abstract_inverted_index.as | 48, 50, 187 |
| abstract_inverted_index.at | 176 |
| abstract_inverted_index.by | 136 |
| abstract_inverted_index.in | 82, 100, 184, 202, 217 |
| abstract_inverted_index.of | 13, 38, 43, 56, 75, 95, 159, 182, 190 |
| abstract_inverted_index.on | 70, 151, 230 |
| abstract_inverted_index.or | 11, 195 |
| abstract_inverted_index.to | 60, 126, 162, 240 |
| abstract_inverted_index.10% | 194 |
| abstract_inverted_index.FDG | 69, 228 |
| abstract_inverted_index.PET | 139 |
| abstract_inverted_index.The | 29, 54 |
| abstract_inverted_index.aim | 55 |
| abstract_inverted_index.and | 3, 20, 88, 107, 129, 133, 146, 197, 208, 221, 236, 242 |
| abstract_inverted_index.are | 16 |
| abstract_inverted_index.bed | 103 |
| abstract_inverted_index.for | 64, 105, 225 |
| abstract_inverted_index.how | 164 |
| abstract_inverted_index.low | 237 |
| abstract_inverted_index.min | 109 |
| abstract_inverted_index.now | 17 |
| abstract_inverted_index.our | 83 |
| abstract_inverted_index.the | 71, 73, 143, 171, 180, 185, 206, 215, 231 |
| abstract_inverted_index.use | 42 |
| abstract_inverted_index.was | 59, 156, 193, 199 |
| abstract_inverted_index.who | 141 |
| abstract_inverted_index.(0.5 | 91 |
| abstract_inverted_index.AFOV | 27, 37 |
| abstract_inverted_index.True | 1 |
| abstract_inverted_index.also | 157 |
| abstract_inverted_index.body | 14 |
| abstract_inverted_index.both | 177, 218 |
| abstract_inverted_index.data | 113, 116, 213 |
| abstract_inverted_index.dose | 90 |
| abstract_inverted_index.down | 125 |
| abstract_inverted_index.each | 94 |
| abstract_inverted_index.high | 246 |
| abstract_inverted_index.less | 196 |
| abstract_inverted_index.min, | 131 |
| abstract_inverted_index.more | 12 |
| abstract_inverted_index.over | 25 |
| abstract_inverted_index.scan | 52, 222 |
| abstract_inverted_index.then | 118, 134 |
| abstract_inverted_index.this | 57, 165, 203 |
| abstract_inverted_index.well | 49 |
| abstract_inverted_index.were | 98, 117 |
| abstract_inverted_index.with | 9, 35, 68, 111, 167 |
| abstract_inverted_index.These | 115, 212 |
| abstract_inverted_index.axial | 5 |
| abstract_inverted_index.based | 150 |
| abstract_inverted_index.doses | 239 |
| abstract_inverted_index.given | 78 |
| abstract_inverted_index.image | 160, 191 |
| abstract_inverted_index.liver | 186 |
| abstract_inverted_index.lower | 45 |
| abstract_inverted_index.noise | 161, 192 |
| abstract_inverted_index.staff | 241 |
| abstract_inverted_index.study | 58 |
| abstract_inverted_index.there | 198 |
| abstract_inverted_index.times | 124, 224 |
| abstract_inverted_index.while | 244 |
| abstract_inverted_index.(AFOV) | 7 |
| abstract_inverted_index.106cm, | 39 |
| abstract_inverted_index.MBq/g) | 92 |
| abstract_inverted_index.PET/CT | 8, 229 |
| abstract_inverted_index.Quadra | 33, 72, 232 |
| abstract_inverted_index.Vision | 32 |
| abstract_inverted_index.allows | 41 |
| abstract_inverted_index.assess | 163 |
| abstract_inverted_index.dosing | 178 |
| abstract_inverted_index.single | 102 |
| abstract_inverted_index.system | 23 |
| abstract_inverted_index.times. | 53 |
| abstract_inverted_index.MBq/kg) | 87 |
| abstract_inverted_index.PET/CT. | 28 |
| abstract_inverted_index.Siemens | 30 |
| abstract_inverted_index.between | 205 |
| abstract_inverted_index.images. | 248 |
| abstract_inverted_index.imaging | 67 |
| abstract_inverted_index.levels, | 179 |
| abstract_inverted_index.longest | 209 |
| abstract_inverted_index.measure | 189, 204 |
| abstract_inverted_index.minimal | 147, 200 |
| abstract_inverted_index.minimum | 173 |
| abstract_inverted_index.optimal | 145, 207 |
| abstract_inverted_index.quality | 247 |
| abstract_inverted_index.readers | 140 |
| abstract_inverted_index.reduced | 51, 76 |
| abstract_inverted_index.routine | 65, 226 |
| abstract_inverted_index.scanned | 99 |
| abstract_inverted_index.shorter | 122 |
| abstract_inverted_index.support | 214 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Biograph | 31 |
| abstract_inverted_index.Low-dose | 85 |
| abstract_inverted_index.activity | 77, 220 |
| abstract_inverted_index.analysis | 155 |
| abstract_inverted_index.clinical | 66, 227 |
| abstract_inverted_index.cohorts, | 93 |
| abstract_inverted_index.coverage | 15 |
| abstract_inverted_index.extended | 4 |
| abstract_inverted_index.increase | 22 |
| abstract_inverted_index.optimise | 61 |
| abstract_inverted_index.patients | 97 |
| abstract_inverted_index.personal | 152 |
| abstract_inverted_index.physical | 79 |
| abstract_inverted_index.position | 104 |
| abstract_inverted_index.reviewed | 135 |
| abstract_inverted_index.selected | 142 |
| abstract_inverted_index.shortest | 144 |
| abstract_inverted_index.variance | 183 |
| abstract_inverted_index.(Quadra), | 34 |
| abstract_inverted_index.achieving | 245 |
| abstract_inverted_index.available | 19 |
| abstract_inverted_index.consensus | 172 |
| abstract_inverted_index.durations | 149, 175 |
| abstract_inverted_index.efficient | 234 |
| abstract_inverted_index.facility. | 84 |
| abstract_inverted_index.list-mode | 112 |
| abstract_inverted_index.patients, | 243 |
| abstract_inverted_index.performed | 158 |
| abstract_inverted_index.protocols | 63 |
| abstract_inverted_index.providing | 233 |
| abstract_inverted_index.radiation | 238 |
| abstract_inverted_index.reduction | 201, 216 |
| abstract_inverted_index.ultra-low | 89 |
| abstract_inverted_index.workflows | 235 |
| abstract_inverted_index.correlated | 166 |
| abstract_inverted_index.durations. | 211 |
| abstract_inverted_index.simulating | 120 |
| abstract_inverted_index.total-body | 2 |
| abstract_inverted_index.acquisition | 62, 123, 148, 174, 210, 223 |
| abstract_inverted_index.coefficient | 181 |
| abstract_inverted_index.constraints | 81 |
| abstract_inverted_index.experienced | 138 |
| abstract_inverted_index.potentially | 40 |
| abstract_inverted_index.qualitative | 168 |
| abstract_inverted_index.sensitivity | 24 |
| abstract_inverted_index.Quantitative | 154 |
| abstract_inverted_index.acquisition. | 114 |
| abstract_inverted_index.administered | 46, 219 |
| abstract_inverted_index.commercially | 18 |
| abstract_inverted_index.conventional | 26 |
| abstract_inverted_index.dramatically | 21 |
| abstract_inverted_index.preferences. | 153, 169 |
| abstract_inverted_index.respectively | 110, 132 |
| abstract_inverted_index.field-of-view | 6 |
| abstract_inverted_index.progressively | 121 |
| abstract_inverted_index.reconstructed | 119 |
| abstract_inverted_index.significantly | 44 |
| abstract_inverted_index.infrastructure | 80 |
| abstract_inverted_index.prioritisation | 74 |
| abstract_inverted_index.radiopharmaceuticals | 47 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 95 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.6299999952316284 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile.value | 0.92126424 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |