Optimised denoising-based deep learning classification for evaluating concrete surface cracks Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.36680/j.itcon.2025.064
Conventional visual inspections of concrete structures are hazardous, time-consuming, and prone to subjectivity, which has accelerated the adoption of automated image-based techniques for structural health monitoring. Deep learning methods, particularly convolutional neural networks (CNNs), offer significant potential for crack detection, yet their accuracy is often compromised by image noise arising from environmental conditions, sensor artefacts, and preprocessing. This study systematically evaluates the integration of five state-of-the-art denoising approaches (HRL, SANet, ADNet, SW-CNN, CDNet) with six pre-trained CNN architectures (AlexNet, VGG19, GoogLeNet, ShuffleNet, ResNet-101, and Xception) to enhance concrete crack detection and classification. The research is structured into three methodological stages. First, the baseline classification performance of the six pre-trained CNN architecturesis evaluated using a dataset of 40,000 concrete surface images, evenly divided between cracked and non-cracked samples. Second, five state-of-the-art denoising methods are applied as a preprocessing step to mitigate noise effects prior to classification. Third, the impact of each denoising approach is quantitatively assessed using accuracy, sensitivity, and F1-score metrics. The integration of denoising techniques led to substantial performance improvements across all models. For instance, AlexNet’s F1-score increased from 53.31% to 71.19%, while Xception achieved the highest overall F1-score of 97.72% and accuracy of 97.7% following denoising. ResNet-101 similarly improved to 96.3% accuracy and 96.27% F1-score. Lightweight models such as ShuffleNet also demonstrated excellent gains, reaching 90.5% accuracy and 89.58% F1-score when paired with SW-CNN. Notably, SW-CNN yielded the most consistent performance, achieving the highest F1-score in four of the six models, while CDNet and ADNet were especially effective in boosting sensitivity metrics. Efficiency analysis further highlighted practical deployment trade-offs: ShuffleNet+SW-CNN achieved 3.7 ms/image latency, ~270 images/s throughput, and an 18 MB model size, making it suitable for edge devices, whereas Xception+SW-CNN, though heavier (228 MB, 11.2 ms/image), maximized accuracy for server-class monitoring. These results underline the importance of balancing performance and efficiency in real-world applications. On average, the application of denoising methods resulted in F1-score improvements of 13–15%, underscoring the effectiveness of preprocessing in enhancing model reliability. These findings highlight the critical role of image denoising in improving the performance of deep learning-based crack detection systems. Moreover, the combination of efficient CNN architectures with robust denoising offers promising pathways for both edge deployment and server-based structural monitoring solutions. This research demonstrates that coupling CNNs with denoising substantially enhances crack detection robustness and reliability, contributing to safer and more scalable structural health monitoring systems. Future work should validate the pipeline on external datasets, perform controlled noise-stress testing, and integrate domain-specific augmentations to ensure generalizability across diverse materials and field conditions.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.36680/j.itcon.2025.064
- http://www.itcon.org/papers/2025_64-ITcon-SI-Matarneh.pdf
- OA Status
- diamond
- References
- 77
- OpenAlex ID
- https://openalex.org/W4414669069
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414669069Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.36680/j.itcon.2025.064Digital Object Identifier
- Title
-
Optimised denoising-based deep learning classification for evaluating concrete surface cracksWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-09-30Full publication date if available
- Authors
-
Sandra Matarneh, Faris Elghaish, Farzad Pour Rahimian, Essam Abdellatef, Algan Tezel, Abdul‐Majeed Mahamadu, Mohammed AbdelmegidList of authors in order
- Landing page
-
https://doi.org/10.36680/j.itcon.2025.064Publisher landing page
- PDF URL
-
https://www.itcon.org/papers/2025_64-ITcon-SI-Matarneh.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://www.itcon.org/papers/2025_64-ITcon-SI-Matarneh.pdfDirect OA link when available
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
77Number of works referenced by this work
Full payload
| id | https://openalex.org/W4414669069 |
|---|---|
| doi | https://doi.org/10.36680/j.itcon.2025.064 |
| ids.doi | https://doi.org/10.36680/j.itcon.2025.064 |
| ids.openalex | https://openalex.org/W4414669069 |
| fwci | 0.0 |
| type | article |
| title | Optimised denoising-based deep learning classification for evaluating concrete surface cracks |
| biblio.issue | 1 |
| biblio.volume | 30 |
| biblio.last_page | 1573 |
| biblio.first_page | 1573 |
| topics[0].id | https://openalex.org/T11606 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2205 |
| topics[0].subfield.display_name | Civil and Structural Engineering |
| topics[0].display_name | Infrastructure Maintenance and Monitoring |
| topics[1].id | https://openalex.org/T10534 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9947999715805054 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2205 |
| topics[1].subfield.display_name | Civil and Structural Engineering |
| topics[1].display_name | Structural Health Monitoring Techniques |
| topics[2].id | https://openalex.org/T11850 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.992900013923645 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2205 |
| topics[2].subfield.display_name | Civil and Structural Engineering |
| topics[2].display_name | Concrete Corrosion and Durability |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | doi:10.36680/j.itcon.2025.064 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2764534584 |
| locations[0].source.issn | 1874-4753 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1874-4753 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Journal of Information Technology in Construction |
| locations[0].source.host_organization | https://openalex.org/P4310318521 |
| locations[0].source.host_organization_name | Conseil International du Bâtiment |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310318521 |
| locations[0].source.host_organization_lineage_names | Conseil International du Bâtiment |
| locations[0].license | cc-by |
| locations[0].pdf_url | http://www.itcon.org/papers/2025_64-ITcon-SI-Matarneh.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Information Technology in Construction |
| locations[0].landing_page_url | https://doi.org/10.36680/j.itcon.2025.064 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5020956545 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1351-2780 |
| authorships[0].author.display_name | Sandra Matarneh |
| authorships[0].countries | AE |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I201726411 |
| authorships[0].affiliations[0].raw_affiliation_string | United Arab Emirates University |
| authorships[0].institutions[0].id | https://openalex.org/I201726411 |
| authorships[0].institutions[0].ror | https://ror.org/01km6p862 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I201726411 |
| authorships[0].institutions[0].country_code | AE |
| authorships[0].institutions[0].display_name | United Arab Emirates University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Sandra Matarneh |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | United Arab Emirates University |
| authorships[1].author.id | https://openalex.org/A5082943929 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7558-6291 |
| authorships[1].author.display_name | Faris Elghaish |
| authorships[1].countries | GB |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I126231945 |
| authorships[1].affiliations[0].raw_affiliation_string | Queen's University Belfast |
| authorships[1].institutions[0].id | https://openalex.org/I126231945 |
| authorships[1].institutions[0].ror | https://ror.org/00hswnk62 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I126231945 |
| authorships[1].institutions[0].country_code | GB |
| authorships[1].institutions[0].display_name | Queen's University Belfast |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Faris Elghaish |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Queen's University Belfast |
| authorships[2].author.id | https://openalex.org/A5035993068 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7443-4723 |
| authorships[2].author.display_name | Farzad Pour Rahimian |
| authorships[2].countries | GB |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I874055015 |
| authorships[2].affiliations[0].raw_affiliation_string | Teesside University |
| authorships[2].institutions[0].id | https://openalex.org/I874055015 |
| authorships[2].institutions[0].ror | https://ror.org/03z28gk75 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I874055015 |
| authorships[2].institutions[0].country_code | GB |
| authorships[2].institutions[0].display_name | Teesside University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Farzad Pour Rahimian |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Teesside University |
| authorships[3].author.id | https://openalex.org/A5048004422 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Essam Abdellatef |
| authorships[3].countries | EG |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210090507 |
| authorships[3].affiliations[0].raw_affiliation_string | Alamein International University, Matrouh; Egypt |
| authorships[3].institutions[0].id | https://openalex.org/I4210090507 |
| authorships[3].institutions[0].ror | https://ror.org/0019h0z47 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210090507 |
| authorships[3].institutions[0].country_code | EG |
| authorships[3].institutions[0].display_name | AlAlamein International University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Essam Abdellatef |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Alamein International University, Matrouh; Egypt |
| authorships[4].author.id | https://openalex.org/A5061225554 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-3903-6126 |
| authorships[4].author.display_name | Algan Tezel |
| authorships[4].countries | QA |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I60342839 |
| authorships[4].affiliations[0].raw_affiliation_string | University of Doha, Qatar |
| authorships[4].institutions[0].id | https://openalex.org/I60342839 |
| authorships[4].institutions[0].ror | https://ror.org/00yhnba62 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I60342839 |
| authorships[4].institutions[0].country_code | QA |
| authorships[4].institutions[0].display_name | Qatar University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Algan Tezel |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | University of Doha, Qatar |
| authorships[5].author.id | https://openalex.org/A5054398844 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-7757-8562 |
| authorships[5].author.display_name | Abdul‐Majeed Mahamadu |
| authorships[5].countries | GB |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I45129253 |
| authorships[5].affiliations[0].raw_affiliation_string | University College London, UK |
| authorships[5].institutions[0].id | https://openalex.org/I45129253 |
| authorships[5].institutions[0].ror | https://ror.org/02jx3x895 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I124357947, https://openalex.org/I45129253 |
| authorships[5].institutions[0].country_code | GB |
| authorships[5].institutions[0].display_name | University College London |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Abdul-Majeed Mahamadu |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | University College London, UK |
| authorships[6].author.id | https://openalex.org/A5071390997 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-6205-570X |
| authorships[6].author.display_name | Mohammed Abdelmegid |
| authorships[6].countries | GB |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I130828816 |
| authorships[6].affiliations[0].raw_affiliation_string | University of Leeds |
| authorships[6].institutions[0].id | https://openalex.org/I130828816 |
| authorships[6].institutions[0].ror | https://ror.org/024mrxd33 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I130828816 |
| authorships[6].institutions[0].country_code | GB |
| authorships[6].institutions[0].display_name | University of Leeds |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Mohammed Abdelmegid |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | University of Leeds |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | http://www.itcon.org/papers/2025_64-ITcon-SI-Matarneh.pdf |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Optimised denoising-based deep learning classification for evaluating concrete surface cracks |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11606 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2205 |
| primary_topic.subfield.display_name | Civil and Structural Engineering |
| primary_topic.display_name | Infrastructure Maintenance and Monitoring |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.36680/j.itcon.2025.064 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764534584 |
| best_oa_location.source.issn | 1874-4753 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1874-4753 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Journal of Information Technology in Construction |
| best_oa_location.source.host_organization | https://openalex.org/P4310318521 |
| best_oa_location.source.host_organization_name | Conseil International du Bâtiment |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310318521 |
| best_oa_location.source.host_organization_lineage_names | Conseil International du Bâtiment |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | http://www.itcon.org/papers/2025_64-ITcon-SI-Matarneh.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Information Technology in Construction |
| best_oa_location.landing_page_url | https://doi.org/10.36680/j.itcon.2025.064 |
| primary_location.id | doi:10.36680/j.itcon.2025.064 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2764534584 |
| primary_location.source.issn | 1874-4753 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1874-4753 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Journal of Information Technology in Construction |
| primary_location.source.host_organization | https://openalex.org/P4310318521 |
| primary_location.source.host_organization_name | Conseil International du Bâtiment |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310318521 |
| primary_location.source.host_organization_lineage_names | Conseil International du Bâtiment |
| primary_location.license | cc-by |
| primary_location.pdf_url | http://www.itcon.org/papers/2025_64-ITcon-SI-Matarneh.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Information Technology in Construction |
| primary_location.landing_page_url | https://doi.org/10.36680/j.itcon.2025.064 |
| publication_date | 2025-09-30 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W3135897784, https://openalex.org/W2972460946, https://openalex.org/W2598457882, https://openalex.org/W2297770232, https://openalex.org/W2765854388, https://openalex.org/W2936086693, https://openalex.org/W2910066819, https://openalex.org/W1906770428, https://openalex.org/W3200041764, https://openalex.org/W2793775504, https://openalex.org/W2790477006, https://openalex.org/W2887597701, https://openalex.org/W4365505928, https://openalex.org/W2905163589, https://openalex.org/W3007504755, https://openalex.org/W3016245448, https://openalex.org/W3080613661, https://openalex.org/W4320736512, https://openalex.org/W3014789089, https://openalex.org/W4387337484, https://openalex.org/W2955074792, https://openalex.org/W3044607848, https://openalex.org/W2804523126, https://openalex.org/W2950765052, https://openalex.org/W4311691172, https://openalex.org/W3040786507, https://openalex.org/W3082029026, https://openalex.org/W3011200270, https://openalex.org/W3111817041, https://openalex.org/W2809980976, https://openalex.org/W2910362756, https://openalex.org/W2546302380, https://openalex.org/W3033645921, https://openalex.org/W2242218935, https://openalex.org/W2618530766, https://openalex.org/W4220964139, https://openalex.org/W2942900320, https://openalex.org/W3044468720, https://openalex.org/W3008676889, https://openalex.org/W2912350898, https://openalex.org/W3036790102, https://openalex.org/W2007052121, https://openalex.org/W2560533888, https://openalex.org/W2899144041, https://openalex.org/W4213004382, https://openalex.org/W4311350576, https://openalex.org/W3087110941, https://openalex.org/W2963125676, https://openalex.org/W2983902176, https://openalex.org/W4319988700, https://openalex.org/W3213649725, https://openalex.org/W2946055557, https://openalex.org/W2253429366, https://openalex.org/W2156163116, https://openalex.org/W4296809356, https://openalex.org/W2945897706, https://openalex.org/W2990192313, https://openalex.org/W2554078916, https://openalex.org/W2794233697, https://openalex.org/W2999653953, https://openalex.org/W2025768430, https://openalex.org/W4381429053, https://openalex.org/W2999145193, https://openalex.org/W2908753069, https://openalex.org/W4383877600, https://openalex.org/W2962860144, https://openalex.org/W3041810394, https://openalex.org/W2926243678, https://openalex.org/W2508457857, https://openalex.org/W2764207251, https://openalex.org/W3022346097, https://openalex.org/W2924913851, https://openalex.org/W2810292802, https://openalex.org/W3080432055, https://openalex.org/W3005103780, https://openalex.org/W2899242765, https://openalex.org/W3104467360 |
| referenced_works_count | 77 |
| abstract_inverted_index.a | 113, 135 |
| abstract_inverted_index.18 | 271 |
| abstract_inverted_index.MB | 272 |
| abstract_inverted_index.On | 307 |
| abstract_inverted_index.an | 270 |
| abstract_inverted_index.as | 134, 210 |
| abstract_inverted_index.by | 46 |
| abstract_inverted_index.in | 237, 250, 304, 315, 325, 338 |
| abstract_inverted_index.is | 43, 94, 152 |
| abstract_inverted_index.it | 276 |
| abstract_inverted_index.of | 3, 18, 63, 105, 115, 148, 163, 190, 194, 239, 299, 311, 318, 323, 335, 342, 351 |
| abstract_inverted_index.on | 401 |
| abstract_inverted_index.to | 11, 85, 138, 143, 167, 181, 201, 386, 412 |
| abstract_inverted_index.3.7 | 263 |
| abstract_inverted_index.CNN | 76, 109, 353 |
| abstract_inverted_index.For | 174 |
| abstract_inverted_index.MB, | 286 |
| abstract_inverted_index.The | 92, 161 |
| abstract_inverted_index.all | 172 |
| abstract_inverted_index.and | 9, 55, 83, 90, 124, 158, 192, 204, 219, 245, 269, 302, 365, 383, 388, 408, 418 |
| abstract_inverted_index.are | 6, 132 |
| abstract_inverted_index.for | 22, 37, 278, 291, 361 |
| abstract_inverted_index.has | 14 |
| abstract_inverted_index.led | 166 |
| abstract_inverted_index.six | 74, 107, 241 |
| abstract_inverted_index.the | 16, 61, 101, 106, 146, 186, 229, 234, 240, 297, 309, 321, 332, 340, 349, 399 |
| abstract_inverted_index.yet | 40 |
| abstract_inverted_index.(228 | 285 |
| abstract_inverted_index.11.2 | 287 |
| abstract_inverted_index.CNNs | 375 |
| abstract_inverted_index.Deep | 26 |
| abstract_inverted_index.This | 57, 370 |
| abstract_inverted_index.also | 212 |
| abstract_inverted_index.both | 362 |
| abstract_inverted_index.deep | 343 |
| abstract_inverted_index.each | 149 |
| abstract_inverted_index.edge | 279, 363 |
| abstract_inverted_index.five | 64, 128 |
| abstract_inverted_index.four | 238 |
| abstract_inverted_index.from | 50, 179 |
| abstract_inverted_index.into | 96 |
| abstract_inverted_index.more | 389 |
| abstract_inverted_index.most | 230 |
| abstract_inverted_index.role | 334 |
| abstract_inverted_index.step | 137 |
| abstract_inverted_index.such | 209 |
| abstract_inverted_index.that | 373 |
| abstract_inverted_index.were | 247 |
| abstract_inverted_index.when | 222 |
| abstract_inverted_index.with | 73, 224, 355, 376 |
| abstract_inverted_index.work | 396 |
| abstract_inverted_index.~270 | 266 |
| abstract_inverted_index.(HRL, | 68 |
| abstract_inverted_index.90.5% | 217 |
| abstract_inverted_index.96.3% | 202 |
| abstract_inverted_index.97.7% | 195 |
| abstract_inverted_index.ADNet | 246 |
| abstract_inverted_index.CDNet | 244 |
| abstract_inverted_index.These | 294, 329 |
| abstract_inverted_index.crack | 38, 88, 345, 380 |
| abstract_inverted_index.field | 419 |
| abstract_inverted_index.image | 47, 336 |
| abstract_inverted_index.model | 273, 327 |
| abstract_inverted_index.noise | 48, 140 |
| abstract_inverted_index.offer | 34 |
| abstract_inverted_index.often | 44 |
| abstract_inverted_index.prior | 142 |
| abstract_inverted_index.prone | 10 |
| abstract_inverted_index.safer | 387 |
| abstract_inverted_index.size, | 274 |
| abstract_inverted_index.study | 58 |
| abstract_inverted_index.their | 41 |
| abstract_inverted_index.three | 97 |
| abstract_inverted_index.using | 112, 155 |
| abstract_inverted_index.which | 13 |
| abstract_inverted_index.while | 183, 243 |
| abstract_inverted_index.40,000 | 116 |
| abstract_inverted_index.53.31% | 180 |
| abstract_inverted_index.89.58% | 220 |
| abstract_inverted_index.96.27% | 205 |
| abstract_inverted_index.97.72% | 191 |
| abstract_inverted_index.ADNet, | 70 |
| abstract_inverted_index.CDNet) | 72 |
| abstract_inverted_index.First, | 100 |
| abstract_inverted_index.Future | 395 |
| abstract_inverted_index.SANet, | 69 |
| abstract_inverted_index.SW-CNN | 227 |
| abstract_inverted_index.Third, | 145 |
| abstract_inverted_index.VGG19, | 79 |
| abstract_inverted_index.across | 171, 415 |
| abstract_inverted_index.ensure | 413 |
| abstract_inverted_index.evenly | 120 |
| abstract_inverted_index.gains, | 215 |
| abstract_inverted_index.health | 24, 392 |
| abstract_inverted_index.impact | 147 |
| abstract_inverted_index.making | 275 |
| abstract_inverted_index.models | 208 |
| abstract_inverted_index.neural | 31 |
| abstract_inverted_index.offers | 358 |
| abstract_inverted_index.paired | 223 |
| abstract_inverted_index.robust | 356 |
| abstract_inverted_index.sensor | 53 |
| abstract_inverted_index.should | 397 |
| abstract_inverted_index.though | 283 |
| abstract_inverted_index.visual | 1 |
| abstract_inverted_index.(CNNs), | 33 |
| abstract_inverted_index.71.19%, | 182 |
| abstract_inverted_index.SW-CNN, | 71 |
| abstract_inverted_index.SW-CNN. | 225 |
| abstract_inverted_index.Second, | 127 |
| abstract_inverted_index.applied | 133 |
| abstract_inverted_index.arising | 49 |
| abstract_inverted_index.between | 122 |
| abstract_inverted_index.cracked | 123 |
| abstract_inverted_index.dataset | 114 |
| abstract_inverted_index.diverse | 416 |
| abstract_inverted_index.divided | 121 |
| abstract_inverted_index.effects | 141 |
| abstract_inverted_index.enhance | 86 |
| abstract_inverted_index.further | 256 |
| abstract_inverted_index.heavier | 284 |
| abstract_inverted_index.highest | 187, 235 |
| abstract_inverted_index.images, | 119 |
| abstract_inverted_index.methods | 131, 313 |
| abstract_inverted_index.models, | 242 |
| abstract_inverted_index.models. | 173 |
| abstract_inverted_index.overall | 188 |
| abstract_inverted_index.perform | 404 |
| abstract_inverted_index.results | 295 |
| abstract_inverted_index.stages. | 99 |
| abstract_inverted_index.surface | 118 |
| abstract_inverted_index.whereas | 281 |
| abstract_inverted_index.yielded | 228 |
| abstract_inverted_index.F1-score | 159, 177, 189, 221, 236, 316 |
| abstract_inverted_index.Notably, | 226 |
| abstract_inverted_index.Xception | 184 |
| abstract_inverted_index.accuracy | 42, 193, 203, 218, 290 |
| abstract_inverted_index.achieved | 185, 262 |
| abstract_inverted_index.adoption | 17 |
| abstract_inverted_index.analysis | 255 |
| abstract_inverted_index.approach | 151 |
| abstract_inverted_index.assessed | 154 |
| abstract_inverted_index.average, | 308 |
| abstract_inverted_index.baseline | 102 |
| abstract_inverted_index.boosting | 251 |
| abstract_inverted_index.concrete | 4, 87, 117 |
| abstract_inverted_index.coupling | 374 |
| abstract_inverted_index.critical | 333 |
| abstract_inverted_index.devices, | 280 |
| abstract_inverted_index.enhances | 379 |
| abstract_inverted_index.external | 402 |
| abstract_inverted_index.findings | 330 |
| abstract_inverted_index.images/s | 267 |
| abstract_inverted_index.improved | 200 |
| abstract_inverted_index.latency, | 265 |
| abstract_inverted_index.learning | 27 |
| abstract_inverted_index.methods, | 28 |
| abstract_inverted_index.metrics. | 160, 253 |
| abstract_inverted_index.mitigate | 139 |
| abstract_inverted_index.ms/image | 264 |
| abstract_inverted_index.networks | 32 |
| abstract_inverted_index.pathways | 360 |
| abstract_inverted_index.pipeline | 400 |
| abstract_inverted_index.reaching | 216 |
| abstract_inverted_index.research | 93, 371 |
| abstract_inverted_index.resulted | 314 |
| abstract_inverted_index.samples. | 126 |
| abstract_inverted_index.scalable | 390 |
| abstract_inverted_index.suitable | 277 |
| abstract_inverted_index.systems. | 347, 394 |
| abstract_inverted_index.testing, | 407 |
| abstract_inverted_index.validate | 398 |
| abstract_inverted_index.(AlexNet, | 78 |
| abstract_inverted_index.13–15%, | 319 |
| abstract_inverted_index.F1-score. | 206 |
| abstract_inverted_index.Moreover, | 348 |
| abstract_inverted_index.Xception) | 84 |
| abstract_inverted_index.accuracy, | 156 |
| abstract_inverted_index.achieving | 233 |
| abstract_inverted_index.automated | 19 |
| abstract_inverted_index.balancing | 300 |
| abstract_inverted_index.datasets, | 403 |
| abstract_inverted_index.denoising | 66, 130, 150, 164, 312, 337, 357, 377 |
| abstract_inverted_index.detection | 89, 346, 381 |
| abstract_inverted_index.effective | 249 |
| abstract_inverted_index.efficient | 352 |
| abstract_inverted_index.enhancing | 326 |
| abstract_inverted_index.evaluated | 111 |
| abstract_inverted_index.evaluates | 60 |
| abstract_inverted_index.excellent | 214 |
| abstract_inverted_index.following | 196 |
| abstract_inverted_index.highlight | 331 |
| abstract_inverted_index.improving | 339 |
| abstract_inverted_index.increased | 178 |
| abstract_inverted_index.instance, | 175 |
| abstract_inverted_index.integrate | 409 |
| abstract_inverted_index.materials | 417 |
| abstract_inverted_index.maximized | 289 |
| abstract_inverted_index.potential | 36 |
| abstract_inverted_index.practical | 258 |
| abstract_inverted_index.promising | 359 |
| abstract_inverted_index.similarly | 199 |
| abstract_inverted_index.underline | 296 |
| abstract_inverted_index.Efficiency | 254 |
| abstract_inverted_index.GoogLeNet, | 80 |
| abstract_inverted_index.ResNet-101 | 198 |
| abstract_inverted_index.ShuffleNet | 211 |
| abstract_inverted_index.approaches | 67 |
| abstract_inverted_index.artefacts, | 54 |
| abstract_inverted_index.consistent | 231 |
| abstract_inverted_index.controlled | 405 |
| abstract_inverted_index.denoising. | 197 |
| abstract_inverted_index.deployment | 259, 364 |
| abstract_inverted_index.detection, | 39 |
| abstract_inverted_index.efficiency | 303 |
| abstract_inverted_index.especially | 248 |
| abstract_inverted_index.hazardous, | 7 |
| abstract_inverted_index.importance | 298 |
| abstract_inverted_index.monitoring | 368, 393 |
| abstract_inverted_index.ms/image), | 288 |
| abstract_inverted_index.real-world | 305 |
| abstract_inverted_index.robustness | 382 |
| abstract_inverted_index.solutions. | 369 |
| abstract_inverted_index.structural | 23, 367, 391 |
| abstract_inverted_index.structured | 95 |
| abstract_inverted_index.structures | 5 |
| abstract_inverted_index.techniques | 21, 165 |
| abstract_inverted_index.AlexNet’s | 176 |
| abstract_inverted_index.Lightweight | 207 |
| abstract_inverted_index.ResNet-101, | 82 |
| abstract_inverted_index.ShuffleNet, | 81 |
| abstract_inverted_index.accelerated | 15 |
| abstract_inverted_index.application | 310 |
| abstract_inverted_index.combination | 350 |
| abstract_inverted_index.compromised | 45 |
| abstract_inverted_index.conditions, | 52 |
| abstract_inverted_index.conditions. | 420 |
| abstract_inverted_index.highlighted | 257 |
| abstract_inverted_index.image-based | 20 |
| abstract_inverted_index.inspections | 2 |
| abstract_inverted_index.integration | 62, 162 |
| abstract_inverted_index.monitoring. | 25, 293 |
| abstract_inverted_index.non-cracked | 125 |
| abstract_inverted_index.performance | 104, 169, 301, 341 |
| abstract_inverted_index.pre-trained | 75, 108 |
| abstract_inverted_index.sensitivity | 252 |
| abstract_inverted_index.significant | 35 |
| abstract_inverted_index.substantial | 168 |
| abstract_inverted_index.throughput, | 268 |
| abstract_inverted_index.trade-offs: | 260 |
| abstract_inverted_index.Conventional | 0 |
| abstract_inverted_index.contributing | 385 |
| abstract_inverted_index.demonstrated | 213 |
| abstract_inverted_index.demonstrates | 372 |
| abstract_inverted_index.improvements | 170, 317 |
| abstract_inverted_index.noise-stress | 406 |
| abstract_inverted_index.particularly | 29 |
| abstract_inverted_index.performance, | 232 |
| abstract_inverted_index.reliability, | 384 |
| abstract_inverted_index.reliability. | 328 |
| abstract_inverted_index.sensitivity, | 157 |
| abstract_inverted_index.server-based | 366 |
| abstract_inverted_index.server-class | 292 |
| abstract_inverted_index.underscoring | 320 |
| abstract_inverted_index.applications. | 306 |
| abstract_inverted_index.architectures | 77, 354 |
| abstract_inverted_index.augmentations | 411 |
| abstract_inverted_index.convolutional | 30 |
| abstract_inverted_index.effectiveness | 322 |
| abstract_inverted_index.environmental | 51 |
| abstract_inverted_index.preprocessing | 136, 324 |
| abstract_inverted_index.subjectivity, | 12 |
| abstract_inverted_index.substantially | 378 |
| abstract_inverted_index.classification | 103 |
| abstract_inverted_index.learning-based | 344 |
| abstract_inverted_index.methodological | 98 |
| abstract_inverted_index.preprocessing. | 56 |
| abstract_inverted_index.quantitatively | 153 |
| abstract_inverted_index.systematically | 59 |
| abstract_inverted_index.architecturesis | 110 |
| abstract_inverted_index.classification. | 91, 144 |
| abstract_inverted_index.domain-specific | 410 |
| abstract_inverted_index.time-consuming, | 8 |
| abstract_inverted_index.Xception+SW-CNN, | 282 |
| abstract_inverted_index.generalizability | 414 |
| abstract_inverted_index.state-of-the-art | 65, 129 |
| abstract_inverted_index.ShuffleNet+SW-CNN | 261 |
| cited_by_percentile_year | |
| countries_distinct_count | 4 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile.value | 0.51007157 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |