Optimising Spectronaut search parameters to improve data quality with minimal proteome coverage reductions in DIA analyses of heterogeneous samples Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1101/2023.10.11.561927
Data independent acquisition has seen breakthroughs that enable comprehensive proteome profiling using short gradients. As the proteome coverage continues to increase, the quality of the data generated becomes much more relevant. Using Spectronaut, we show that the default search parameters can be easily optimised to minimise the occurrence of false positives across different samples. Using an immunological infection model system to demonstrate the impact of adjusting search settings we analysed mouse macrophages and compared their proteome to macrophages spiked with Candida albicans . This experimental system enabled the identification of ‘false positives’ since Candida albicans peptides and proteins should not be present in the mouse only samples. We show that adjusting the search parameters reduced ‘false positive’ identifications by 89% at the peptide and protein level, thereby considerably increasing the quality of the data. We also show that these optimised parameters incur a moderate cost, only reducing the overall number of ‘true positive’ identifications across each biological replicate by <6.7% at both the peptide and protein level. We believe the value of our updated search parameters extends beyond a two-organism analysis and would be of great value to any DIA experiment analysing heterogenous populations of cell types or tissues.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1101/2023.10.11.561927
- https://www.biorxiv.org/content/biorxiv/early/2023/10/11/2023.10.11.561927.full.pdf
- OA Status
- green
- Cited By
- 4
- References
- 40
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4387574856
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4387574856Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1101/2023.10.11.561927Digital Object Identifier
- Title
-
Optimising Spectronaut search parameters to improve data quality with minimal proteome coverage reductions in DIA analyses of heterogeneous samplesWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-10-11Full publication date if available
- Authors
-
Christa P. Baker, Roland Bruderer, James Abbott, J. Simon C. Arthur, Alejandro J. BrenesList of authors in order
- Landing page
-
https://doi.org/10.1101/2023.10.11.561927Publisher landing page
- PDF URL
-
https://www.biorxiv.org/content/biorxiv/early/2023/10/11/2023.10.11.561927.full.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.biorxiv.org/content/biorxiv/early/2023/10/11/2023.10.11.561927.full.pdfDirect OA link when available
- Concepts
-
False positive paradox, Proteome, Replicate, Candida albicans, Computational biology, Identification (biology), Computer science, Biology, Profiling (computer programming), Peptide, Data mining, Bioinformatics, Statistics, Mathematics, Biochemistry, Microbiology, Artificial intelligence, Operating system, BotanyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2024: 1Per-year citation counts (last 5 years)
- References (count)
-
40Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4387574856 |
|---|---|
| doi | https://doi.org/10.1101/2023.10.11.561927 |
| ids.doi | https://doi.org/10.1101/2023.10.11.561927 |
| ids.openalex | https://openalex.org/W4387574856 |
| fwci | 0.82599918 |
| type | preprint |
| title | Optimising Spectronaut search parameters to improve data quality with minimal proteome coverage reductions in DIA analyses of heterogeneous samples |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10519 |
| topics[0].field.id | https://openalex.org/fields/16 |
| topics[0].field.display_name | Chemistry |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1607 |
| topics[0].subfield.display_name | Spectroscopy |
| topics[0].display_name | Advanced Proteomics Techniques and Applications |
| topics[1].id | https://openalex.org/T11393 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9973000288009644 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2204 |
| topics[1].subfield.display_name | Biomedical Engineering |
| topics[1].display_name | Biosensors and Analytical Detection |
| topics[2].id | https://openalex.org/T10683 |
| topics[2].field.id | https://openalex.org/fields/16 |
| topics[2].field.display_name | Chemistry |
| topics[2].score | 0.9961000084877014 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1607 |
| topics[2].subfield.display_name | Spectroscopy |
| topics[2].display_name | Mass Spectrometry Techniques and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C64869954 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8751939535140991 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1859747 |
| concepts[0].display_name | False positive paradox |
| concepts[1].id | https://openalex.org/C104397665 |
| concepts[1].level | 2 |
| concepts[1].score | 0.8086346983909607 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q860947 |
| concepts[1].display_name | Proteome |
| concepts[2].id | https://openalex.org/C2781162219 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7250515222549438 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q26250693 |
| concepts[2].display_name | Replicate |
| concepts[3].id | https://openalex.org/C2780917455 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6101515889167786 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q310443 |
| concepts[3].display_name | Candida albicans |
| concepts[4].id | https://openalex.org/C70721500 |
| concepts[4].level | 1 |
| concepts[4].score | 0.6040969491004944 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q177005 |
| concepts[4].display_name | Computational biology |
| concepts[5].id | https://openalex.org/C116834253 |
| concepts[5].level | 2 |
| concepts[5].score | 0.49050015211105347 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2039217 |
| concepts[5].display_name | Identification (biology) |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.4772893488407135 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C86803240 |
| concepts[7].level | 0 |
| concepts[7].score | 0.47135797142982483 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[7].display_name | Biology |
| concepts[8].id | https://openalex.org/C187191949 |
| concepts[8].level | 2 |
| concepts[8].score | 0.43597516417503357 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1138496 |
| concepts[8].display_name | Profiling (computer programming) |
| concepts[9].id | https://openalex.org/C2779281246 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4199253022670746 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q172847 |
| concepts[9].display_name | Peptide |
| concepts[10].id | https://openalex.org/C124101348 |
| concepts[10].level | 1 |
| concepts[10].score | 0.33495795726776123 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[10].display_name | Data mining |
| concepts[11].id | https://openalex.org/C60644358 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3137572705745697 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q128570 |
| concepts[11].display_name | Bioinformatics |
| concepts[12].id | https://openalex.org/C105795698 |
| concepts[12].level | 1 |
| concepts[12].score | 0.15731221437454224 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[12].display_name | Statistics |
| concepts[13].id | https://openalex.org/C33923547 |
| concepts[13].level | 0 |
| concepts[13].score | 0.1483106017112732 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[13].display_name | Mathematics |
| concepts[14].id | https://openalex.org/C55493867 |
| concepts[14].level | 1 |
| concepts[14].score | 0.13668784499168396 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[14].display_name | Biochemistry |
| concepts[15].id | https://openalex.org/C89423630 |
| concepts[15].level | 1 |
| concepts[15].score | 0.1223791241645813 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7193 |
| concepts[15].display_name | Microbiology |
| concepts[16].id | https://openalex.org/C154945302 |
| concepts[16].level | 1 |
| concepts[16].score | 0.1175360381603241 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[16].display_name | Artificial intelligence |
| concepts[17].id | https://openalex.org/C111919701 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[17].display_name | Operating system |
| concepts[18].id | https://openalex.org/C59822182 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q441 |
| concepts[18].display_name | Botany |
| keywords[0].id | https://openalex.org/keywords/false-positive-paradox |
| keywords[0].score | 0.8751939535140991 |
| keywords[0].display_name | False positive paradox |
| keywords[1].id | https://openalex.org/keywords/proteome |
| keywords[1].score | 0.8086346983909607 |
| keywords[1].display_name | Proteome |
| keywords[2].id | https://openalex.org/keywords/replicate |
| keywords[2].score | 0.7250515222549438 |
| keywords[2].display_name | Replicate |
| keywords[3].id | https://openalex.org/keywords/candida-albicans |
| keywords[3].score | 0.6101515889167786 |
| keywords[3].display_name | Candida albicans |
| keywords[4].id | https://openalex.org/keywords/computational-biology |
| keywords[4].score | 0.6040969491004944 |
| keywords[4].display_name | Computational biology |
| keywords[5].id | https://openalex.org/keywords/identification |
| keywords[5].score | 0.49050015211105347 |
| keywords[5].display_name | Identification (biology) |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.4772893488407135 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/biology |
| keywords[7].score | 0.47135797142982483 |
| keywords[7].display_name | Biology |
| keywords[8].id | https://openalex.org/keywords/profiling |
| keywords[8].score | 0.43597516417503357 |
| keywords[8].display_name | Profiling (computer programming) |
| keywords[9].id | https://openalex.org/keywords/peptide |
| keywords[9].score | 0.4199253022670746 |
| keywords[9].display_name | Peptide |
| keywords[10].id | https://openalex.org/keywords/data-mining |
| keywords[10].score | 0.33495795726776123 |
| keywords[10].display_name | Data mining |
| keywords[11].id | https://openalex.org/keywords/bioinformatics |
| keywords[11].score | 0.3137572705745697 |
| keywords[11].display_name | Bioinformatics |
| keywords[12].id | https://openalex.org/keywords/statistics |
| keywords[12].score | 0.15731221437454224 |
| keywords[12].display_name | Statistics |
| keywords[13].id | https://openalex.org/keywords/mathematics |
| keywords[13].score | 0.1483106017112732 |
| keywords[13].display_name | Mathematics |
| keywords[14].id | https://openalex.org/keywords/biochemistry |
| keywords[14].score | 0.13668784499168396 |
| keywords[14].display_name | Biochemistry |
| keywords[15].id | https://openalex.org/keywords/microbiology |
| keywords[15].score | 0.1223791241645813 |
| keywords[15].display_name | Microbiology |
| keywords[16].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[16].score | 0.1175360381603241 |
| keywords[16].display_name | Artificial intelligence |
| language | en |
| locations[0].id | doi:10.1101/2023.10.11.561927 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402567 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| locations[0].source.host_organization | https://openalex.org/I2750212522 |
| locations[0].source.host_organization_name | Cold Spring Harbor Laboratory |
| locations[0].source.host_organization_lineage | https://openalex.org/I2750212522 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.biorxiv.org/content/biorxiv/early/2023/10/11/2023.10.11.561927.full.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.1101/2023.10.11.561927 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5067280218 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3373-2788 |
| authorships[0].author.display_name | Christa P. Baker |
| authorships[0].countries | GB |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I177639307 |
| authorships[0].affiliations[0].raw_affiliation_string | Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, United Kingdom |
| authorships[0].institutions[0].id | https://openalex.org/I177639307 |
| authorships[0].institutions[0].ror | https://ror.org/03h2bxq36 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I177639307 |
| authorships[0].institutions[0].country_code | GB |
| authorships[0].institutions[0].display_name | University of Dundee |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Christa P. Baker |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, United Kingdom |
| authorships[1].author.id | https://openalex.org/A5085341261 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1049-5524 |
| authorships[1].author.display_name | Roland Bruderer |
| authorships[1].countries | CH |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210131658 |
| authorships[1].affiliations[0].raw_affiliation_string | Biognosys AG, Schlieren, Switzerland |
| authorships[1].institutions[0].id | https://openalex.org/I4210131658 |
| authorships[1].institutions[0].ror | https://ror.org/03dr7j353 |
| authorships[1].institutions[0].type | company |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210131658 |
| authorships[1].institutions[0].country_code | CH |
| authorships[1].institutions[0].display_name | Biognosys (Switzerland) |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Roland Bruderer |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Biognosys AG, Schlieren, Switzerland |
| authorships[2].author.id | https://openalex.org/A5058151301 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7701-4249 |
| authorships[2].author.display_name | James Abbott |
| authorships[2].countries | GB, US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I177639307, https://openalex.org/I79463011 |
| authorships[2].affiliations[0].raw_affiliation_string | Data Analysis Group, Division of Computational Biology, School of Life Sciences, University of Dundee, Unite Kingdom |
| authorships[2].institutions[0].id | https://openalex.org/I177639307 |
| authorships[2].institutions[0].ror | https://ror.org/03h2bxq36 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I177639307 |
| authorships[2].institutions[0].country_code | GB |
| authorships[2].institutions[0].display_name | University of Dundee |
| authorships[2].institutions[1].id | https://openalex.org/I79463011 |
| authorships[2].institutions[1].ror | https://ror.org/044jp1563 |
| authorships[2].institutions[1].type | company |
| authorships[2].institutions[1].lineage | https://openalex.org/I79463011 |
| authorships[2].institutions[1].country_code | US |
| authorships[2].institutions[1].display_name | Analysis Group (United States) |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | James Abbott |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Data Analysis Group, Division of Computational Biology, School of Life Sciences, University of Dundee, Unite Kingdom |
| authorships[3].author.id | https://openalex.org/A5054028527 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-8135-1958 |
| authorships[3].author.display_name | J. Simon C. Arthur |
| authorships[3].countries | GB |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I177639307 |
| authorships[3].affiliations[0].raw_affiliation_string | Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, United Kingdom |
| authorships[3].institutions[0].id | https://openalex.org/I177639307 |
| authorships[3].institutions[0].ror | https://ror.org/03h2bxq36 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I177639307 |
| authorships[3].institutions[0].country_code | GB |
| authorships[3].institutions[0].display_name | University of Dundee |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | J. Simon C. Arthur |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, United Kingdom |
| authorships[4].author.id | https://openalex.org/A5065781002 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-8298-2463 |
| authorships[4].author.display_name | Alejandro J. Brenes |
| authorships[4].countries | GB |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I177639307 |
| authorships[4].affiliations[0].raw_affiliation_string | Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, United Kingdom |
| authorships[4].institutions[0].id | https://openalex.org/I177639307 |
| authorships[4].institutions[0].ror | https://ror.org/03h2bxq36 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I177639307 |
| authorships[4].institutions[0].country_code | GB |
| authorships[4].institutions[0].display_name | University of Dundee |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Alejandro J. Brenes |
| authorships[4].is_corresponding | True |
| authorships[4].raw_affiliation_strings | Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, United Kingdom |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.biorxiv.org/content/biorxiv/early/2023/10/11/2023.10.11.561927.full.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Optimising Spectronaut search parameters to improve data quality with minimal proteome coverage reductions in DIA analyses of heterogeneous samples |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10519 |
| primary_topic.field.id | https://openalex.org/fields/16 |
| primary_topic.field.display_name | Chemistry |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1607 |
| primary_topic.subfield.display_name | Spectroscopy |
| primary_topic.display_name | Advanced Proteomics Techniques and Applications |
| related_works | https://openalex.org/W4254851101, https://openalex.org/W3171007296, https://openalex.org/W22115721, https://openalex.org/W2321234655, https://openalex.org/W2065444835, https://openalex.org/W4394550905, https://openalex.org/W2952773340, https://openalex.org/W2470062578, https://openalex.org/W2981861370, https://openalex.org/W4229503580 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1101/2023.10.11.561927 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402567 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| best_oa_location.source.host_organization | https://openalex.org/I2750212522 |
| best_oa_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.biorxiv.org/content/biorxiv/early/2023/10/11/2023.10.11.561927.full.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.1101/2023.10.11.561927 |
| primary_location.id | doi:10.1101/2023.10.11.561927 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402567 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| primary_location.source.host_organization | https://openalex.org/I2750212522 |
| primary_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| primary_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.biorxiv.org/content/biorxiv/early/2023/10/11/2023.10.11.561927.full.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.1101/2023.10.11.561927 |
| publication_date | 2023-10-11 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2971019289, https://openalex.org/W4229334913, https://openalex.org/W2023165792, https://openalex.org/W1995478292, https://openalex.org/W2108047707, https://openalex.org/W2141091417, https://openalex.org/W2018126724, https://openalex.org/W2062859898, https://openalex.org/W4366239787, https://openalex.org/W2909122637, https://openalex.org/W2976507922, https://openalex.org/W3206731434, https://openalex.org/W4362664353, https://openalex.org/W3107622006, https://openalex.org/W3130341180, https://openalex.org/W4297237531, https://openalex.org/W4210673509, https://openalex.org/W2951448848, https://openalex.org/W2771244731, https://openalex.org/W2234993746, https://openalex.org/W2107794472, https://openalex.org/W2171155970, https://openalex.org/W2099063706, https://openalex.org/W2624308185, https://openalex.org/W2605705771, https://openalex.org/W1988940275, https://openalex.org/W2107531246, https://openalex.org/W2004336750, https://openalex.org/W2126924404, https://openalex.org/W2018791249, https://openalex.org/W2146512944, https://openalex.org/W1996423252, https://openalex.org/W3208691473, https://openalex.org/W2977090104, https://openalex.org/W3151729027, https://openalex.org/W2045117578, https://openalex.org/W2999304916, https://openalex.org/W2073371472, https://openalex.org/W2766172487, https://openalex.org/W2170776626 |
| referenced_works_count | 40 |
| abstract_inverted_index.. | 83 |
| abstract_inverted_index.a | 143, 179 |
| abstract_inverted_index.As | 15 |
| abstract_inverted_index.We | 108, 135, 168 |
| abstract_inverted_index.an | 56 |
| abstract_inverted_index.at | 121, 161 |
| abstract_inverted_index.be | 42, 101, 184 |
| abstract_inverted_index.by | 119, 159 |
| abstract_inverted_index.in | 103 |
| abstract_inverted_index.of | 24, 49, 65, 90, 132, 151, 172, 185, 195 |
| abstract_inverted_index.or | 198 |
| abstract_inverted_index.to | 20, 45, 61, 77, 188 |
| abstract_inverted_index.we | 34, 69 |
| abstract_inverted_index.89% | 120 |
| abstract_inverted_index.DIA | 190 |
| abstract_inverted_index.and | 73, 97, 124, 165, 182 |
| abstract_inverted_index.any | 189 |
| abstract_inverted_index.can | 41 |
| abstract_inverted_index.has | 4 |
| abstract_inverted_index.not | 100 |
| abstract_inverted_index.our | 173 |
| abstract_inverted_index.the | 16, 22, 25, 37, 47, 63, 88, 104, 112, 122, 130, 133, 148, 163, 170 |
| abstract_inverted_index.Data | 1 |
| abstract_inverted_index.This | 84 |
| abstract_inverted_index.also | 136 |
| abstract_inverted_index.both | 162 |
| abstract_inverted_index.cell | 196 |
| abstract_inverted_index.data | 26 |
| abstract_inverted_index.each | 156 |
| abstract_inverted_index.more | 30 |
| abstract_inverted_index.much | 29 |
| abstract_inverted_index.only | 106, 146 |
| abstract_inverted_index.seen | 5 |
| abstract_inverted_index.show | 35, 109, 137 |
| abstract_inverted_index.that | 7, 36, 110, 138 |
| abstract_inverted_index.with | 80 |
| abstract_inverted_index.Using | 32, 55 |
| abstract_inverted_index.cost, | 145 |
| abstract_inverted_index.data. | 134 |
| abstract_inverted_index.false | 50 |
| abstract_inverted_index.great | 186 |
| abstract_inverted_index.incur | 142 |
| abstract_inverted_index.model | 59 |
| abstract_inverted_index.mouse | 71, 105 |
| abstract_inverted_index.short | 13 |
| abstract_inverted_index.since | 93 |
| abstract_inverted_index.their | 75 |
| abstract_inverted_index.these | 139 |
| abstract_inverted_index.types | 197 |
| abstract_inverted_index.using | 12 |
| abstract_inverted_index.value | 171, 187 |
| abstract_inverted_index.would | 183 |
| abstract_inverted_index.across | 52, 155 |
| abstract_inverted_index.beyond | 178 |
| abstract_inverted_index.easily | 43 |
| abstract_inverted_index.enable | 8 |
| abstract_inverted_index.impact | 64 |
| abstract_inverted_index.level, | 126 |
| abstract_inverted_index.level. | 167 |
| abstract_inverted_index.number | 150 |
| abstract_inverted_index.search | 39, 67, 113, 175 |
| abstract_inverted_index.should | 99 |
| abstract_inverted_index.spiked | 79 |
| abstract_inverted_index.system | 60, 86 |
| abstract_inverted_index.Candida | 81, 94 |
| abstract_inverted_index.becomes | 28 |
| abstract_inverted_index.believe | 169 |
| abstract_inverted_index.default | 38 |
| abstract_inverted_index.enabled | 87 |
| abstract_inverted_index.extends | 177 |
| abstract_inverted_index.overall | 149 |
| abstract_inverted_index.peptide | 123, 164 |
| abstract_inverted_index.present | 102 |
| abstract_inverted_index.protein | 125, 166 |
| abstract_inverted_index.quality | 23, 131 |
| abstract_inverted_index.reduced | 115 |
| abstract_inverted_index.thereby | 127 |
| abstract_inverted_index.updated | 174 |
| abstract_inverted_index.‘true | 152 |
| abstract_inverted_index.<6.7% | 160 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.albicans | 82, 95 |
| abstract_inverted_index.analysed | 70 |
| abstract_inverted_index.analysis | 181 |
| abstract_inverted_index.compared | 74 |
| abstract_inverted_index.coverage | 18 |
| abstract_inverted_index.minimise | 46 |
| abstract_inverted_index.moderate | 144 |
| abstract_inverted_index.peptides | 96 |
| abstract_inverted_index.proteins | 98 |
| abstract_inverted_index.proteome | 10, 17, 76 |
| abstract_inverted_index.reducing | 147 |
| abstract_inverted_index.samples. | 54, 107 |
| abstract_inverted_index.settings | 68 |
| abstract_inverted_index.tissues. | 199 |
| abstract_inverted_index.‘false | 91, 116 |
| abstract_inverted_index.adjusting | 66, 111 |
| abstract_inverted_index.analysing | 192 |
| abstract_inverted_index.continues | 19 |
| abstract_inverted_index.different | 53 |
| abstract_inverted_index.generated | 27 |
| abstract_inverted_index.increase, | 21 |
| abstract_inverted_index.infection | 58 |
| abstract_inverted_index.optimised | 44, 140 |
| abstract_inverted_index.positives | 51 |
| abstract_inverted_index.profiling | 11 |
| abstract_inverted_index.relevant. | 31 |
| abstract_inverted_index.replicate | 158 |
| abstract_inverted_index.biological | 157 |
| abstract_inverted_index.experiment | 191 |
| abstract_inverted_index.gradients. | 14 |
| abstract_inverted_index.increasing | 129 |
| abstract_inverted_index.occurrence | 48 |
| abstract_inverted_index.parameters | 40, 114, 141, 176 |
| abstract_inverted_index.acquisition | 3 |
| abstract_inverted_index.demonstrate | 62 |
| abstract_inverted_index.independent | 2 |
| abstract_inverted_index.macrophages | 72, 78 |
| abstract_inverted_index.populations | 194 |
| abstract_inverted_index.positive’ | 117, 153 |
| abstract_inverted_index.Spectronaut, | 33 |
| abstract_inverted_index.considerably | 128 |
| abstract_inverted_index.experimental | 85 |
| abstract_inverted_index.heterogenous | 193 |
| abstract_inverted_index.positives’ | 92 |
| abstract_inverted_index.two-organism | 180 |
| abstract_inverted_index.breakthroughs | 6 |
| abstract_inverted_index.comprehensive | 9 |
| abstract_inverted_index.immunological | 57 |
| abstract_inverted_index.identification | 89 |
| abstract_inverted_index.identifications | 118, 154 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 90 |
| corresponding_author_ids | https://openalex.org/A5054028527, https://openalex.org/A5065781002 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I177639307 |
| citation_normalized_percentile.value | 0.67940111 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |