Optimization-Incorporated Deep Learning Strategy to Automate L3 Slice Detection and Abdominal Segmentation in Computed Tomography Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/bioengineering12040367
This study introduces a deep learning-based strategy to automatically detect the L3 slice and segment abdominal tissues from computed tomography (CT) images. Accurate measurement of muscle and fat composition at the L3 level is critical as it can serve as a prognostic biomarker for cancer diagnosis and treatment. However, current manual approaches are time-consuming and prone to class imbalance, since L3 slices constitute only a small fraction of the entire CT dataset. In this study, we propose an optimization-incorporated strategy that integrates augmentation ratio and class weight adjustment as correction design variables within deep learning models. In this retrospective study, the CT dataset was privately collected from 150 prostate cancer and bladder cancer patients at the Department of Urology of Gangneung Asan Hospital. A ResNet50 classifier was used to detect the L3 slice, while standard Unet, Swin-Unet, and SegFormer models were employed to segment abdominal tissues. Bayesian optimization determines optimal augmentation ratios and class weights, mitigating the imbalanced distribution of L3 slices and abdominal tissues. Evaluation of CT data from 150 prostate and bladder cancer patients showed that the optimized models reduced the slice detection error to approximately 0.68 ± 1.26 slices and achieved a Dice coefficient of up to 0.987 ± 0.001 for abdominal tissue segmentation-improvements over the models that did not consider correction design variables. This study confirms that balancing class distribution and properly tuning model parameters enhances performance. The proposed approach may provide reliable and automated biomarkers for early cancer diagnosis and personalized treatment planning.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/bioengineering12040367
- OA Status
- gold
- References
- 58
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4409059283
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4409059283Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/bioengineering12040367Digital Object Identifier
- Title
-
Optimization-Incorporated Deep Learning Strategy to Automate L3 Slice Detection and Abdominal Segmentation in Computed TomographyWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-03-31Full publication date if available
- Authors
-
Seungheon Chae, Sooyong Chae, Taeuk Kang, Sung Jin Kim, Ahnryul ChoiList of authors in order
- Landing page
-
https://doi.org/10.3390/bioengineering12040367Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.3390/bioengineering12040367Direct OA link when available
- Concepts
-
Segmentation, Sørensen–Dice coefficient, Computer science, Prostate cancer, Artificial intelligence, Computed tomography, Image segmentation, Cancer, Pattern recognition (psychology), Radiology, Medicine, Internal medicineTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
58Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4409059283 |
|---|---|
| doi | https://doi.org/10.3390/bioengineering12040367 |
| ids.doi | https://doi.org/10.3390/bioengineering12040367 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40281727 |
| ids.openalex | https://openalex.org/W4409059283 |
| fwci | 0.0 |
| type | article |
| title | Optimization-Incorporated Deep Learning Strategy to Automate L3 Slice Detection and Abdominal Segmentation in Computed Tomography |
| biblio.issue | 4 |
| biblio.volume | 12 |
| biblio.last_page | 367 |
| biblio.first_page | 367 |
| topics[0].id | https://openalex.org/T12422 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9983000159263611 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2741 |
| topics[0].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[0].display_name | Radiomics and Machine Learning in Medical Imaging |
| topics[1].id | https://openalex.org/T10552 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9944999814033508 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2730 |
| topics[1].subfield.display_name | Oncology |
| topics[1].display_name | Colorectal Cancer Screening and Detection |
| topics[2].id | https://openalex.org/T12386 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9843999743461609 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2204 |
| topics[2].subfield.display_name | Biomedical Engineering |
| topics[2].display_name | Advanced X-ray and CT Imaging |
| funders[0].id | https://openalex.org/F4320321203 |
| funders[0].ror | https://ror.org/02wnxgj78 |
| funders[0].display_name | Chungbuk National University |
| is_xpac | False |
| apc_list.value | 1700 |
| apc_list.currency | CHF |
| apc_list.value_usd | 1840 |
| apc_paid.value | 1700 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 1840 |
| concepts[0].id | https://openalex.org/C89600930 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6640843152999878 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[0].display_name | Segmentation |
| concepts[1].id | https://openalex.org/C163892561 |
| concepts[1].level | 4 |
| concepts[1].score | 0.5907365083694458 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2613728 |
| concepts[1].display_name | Sørensen–Dice coefficient |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5508050918579102 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C2780192828 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5498405694961548 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q181257 |
| concepts[3].display_name | Prostate cancer |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5166535973548889 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C544519230 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4275316298007965 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q32566 |
| concepts[5].display_name | Computed tomography |
| concepts[6].id | https://openalex.org/C124504099 |
| concepts[6].level | 3 |
| concepts[6].score | 0.3921140432357788 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q56933 |
| concepts[6].display_name | Image segmentation |
| concepts[7].id | https://openalex.org/C121608353 |
| concepts[7].level | 2 |
| concepts[7].score | 0.39097896218299866 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q12078 |
| concepts[7].display_name | Cancer |
| concepts[8].id | https://openalex.org/C153180895 |
| concepts[8].level | 2 |
| concepts[8].score | 0.3373246192932129 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[8].display_name | Pattern recognition (psychology) |
| concepts[9].id | https://openalex.org/C126838900 |
| concepts[9].level | 1 |
| concepts[9].score | 0.33061790466308594 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q77604 |
| concepts[9].display_name | Radiology |
| concepts[10].id | https://openalex.org/C71924100 |
| concepts[10].level | 0 |
| concepts[10].score | 0.32412612438201904 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[10].display_name | Medicine |
| concepts[11].id | https://openalex.org/C126322002 |
| concepts[11].level | 1 |
| concepts[11].score | 0.13288375735282898 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[11].display_name | Internal medicine |
| keywords[0].id | https://openalex.org/keywords/segmentation |
| keywords[0].score | 0.6640843152999878 |
| keywords[0].display_name | Segmentation |
| keywords[1].id | https://openalex.org/keywords/sørensen–dice-coefficient |
| keywords[1].score | 0.5907365083694458 |
| keywords[1].display_name | Sørensen–Dice coefficient |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5508050918579102 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/prostate-cancer |
| keywords[3].score | 0.5498405694961548 |
| keywords[3].display_name | Prostate cancer |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.5166535973548889 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/computed-tomography |
| keywords[5].score | 0.4275316298007965 |
| keywords[5].display_name | Computed tomography |
| keywords[6].id | https://openalex.org/keywords/image-segmentation |
| keywords[6].score | 0.3921140432357788 |
| keywords[6].display_name | Image segmentation |
| keywords[7].id | https://openalex.org/keywords/cancer |
| keywords[7].score | 0.39097896218299866 |
| keywords[7].display_name | Cancer |
| keywords[8].id | https://openalex.org/keywords/pattern-recognition |
| keywords[8].score | 0.3373246192932129 |
| keywords[8].display_name | Pattern recognition (psychology) |
| keywords[9].id | https://openalex.org/keywords/radiology |
| keywords[9].score | 0.33061790466308594 |
| keywords[9].display_name | Radiology |
| keywords[10].id | https://openalex.org/keywords/medicine |
| keywords[10].score | 0.32412612438201904 |
| keywords[10].display_name | Medicine |
| keywords[11].id | https://openalex.org/keywords/internal-medicine |
| keywords[11].score | 0.13288375735282898 |
| keywords[11].display_name | Internal medicine |
| language | en |
| locations[0].id | doi:10.3390/bioengineering12040367 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210179121 |
| locations[0].source.issn | 2306-5354 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2306-5354 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Bioengineering |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Bioengineering |
| locations[0].landing_page_url | https://doi.org/10.3390/bioengineering12040367 |
| locations[1].id | pmid:40281727 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Bioengineering (Basel, Switzerland) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40281727 |
| locations[2].id | pmh:oai:doaj.org/article:e771146a978942858daa8239dc9717b2 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Bioengineering, Vol 12, Iss 4, p 367 (2025) |
| locations[2].landing_page_url | https://doaj.org/article/e771146a978942858daa8239dc9717b2 |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:12025211 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Bioengineering (Basel) |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/12025211 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5075943784 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Seungheon Chae |
| authorships[0].countries | KR |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I848706 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Bio-Mechatronic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea |
| authorships[0].institutions[0].id | https://openalex.org/I848706 |
| authorships[0].institutions[0].ror | https://ror.org/04q78tk20 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I848706 |
| authorships[0].institutions[0].country_code | KR |
| authorships[0].institutions[0].display_name | Sungkyunkwan University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Seungheon Chae |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Bio-Mechatronic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea |
| authorships[1].author.id | https://openalex.org/A5111004652 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Sooyong Chae |
| authorships[1].countries | KR |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I89079967 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Biomedical Engineering, College of Medical Convergence, Catholic Kwandong University, Gangneung 25601, Republic of Korea |
| authorships[1].institutions[0].id | https://openalex.org/I89079967 |
| authorships[1].institutions[0].ror | https://ror.org/05n486907 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I89079967 |
| authorships[1].institutions[0].country_code | KR |
| authorships[1].institutions[0].display_name | Catholic Kwandong University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Seongwon Chae |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Biomedical Engineering, College of Medical Convergence, Catholic Kwandong University, Gangneung 25601, Republic of Korea |
| authorships[2].author.id | https://openalex.org/A5077569623 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6430-3471 |
| authorships[2].author.display_name | Taeuk Kang |
| authorships[2].countries | KR |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I197347611 |
| authorships[2].affiliations[0].raw_affiliation_string | Institute for Trauma Research, College of Medicine, Korea University, Seoul 02708, Republic of Korea |
| authorships[2].institutions[0].id | https://openalex.org/I197347611 |
| authorships[2].institutions[0].ror | https://ror.org/047dqcg40 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I197347611 |
| authorships[2].institutions[0].country_code | KR |
| authorships[2].institutions[0].display_name | Korea University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Tae Geon Kang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Institute for Trauma Research, College of Medicine, Korea University, Seoul 02708, Republic of Korea |
| authorships[3].author.id | https://openalex.org/A5100458117 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5609-0485 |
| authorships[3].author.display_name | Sung Jin Kim |
| authorships[3].countries | KR |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I116631150, https://openalex.org/I40542001, https://openalex.org/I4210139505 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Urology, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung 25440, Republic of Korea |
| authorships[3].institutions[0].id | https://openalex.org/I4210139505 |
| authorships[3].institutions[0].ror | https://ror.org/03pw3x387 |
| authorships[3].institutions[0].type | healthcare |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210139505 |
| authorships[3].institutions[0].country_code | KR |
| authorships[3].institutions[0].display_name | Gangneung Asan Hospital |
| authorships[3].institutions[1].id | https://openalex.org/I116631150 |
| authorships[3].institutions[1].ror | https://ror.org/02tec3785 |
| authorships[3].institutions[1].type | education |
| authorships[3].institutions[1].lineage | https://openalex.org/I116631150 |
| authorships[3].institutions[1].country_code | KR |
| authorships[3].institutions[1].display_name | Ulsan College |
| authorships[3].institutions[2].id | https://openalex.org/I40542001 |
| authorships[3].institutions[2].ror | https://ror.org/02c2f8975 |
| authorships[3].institutions[2].type | education |
| authorships[3].institutions[2].lineage | https://openalex.org/I40542001 |
| authorships[3].institutions[2].country_code | KR |
| authorships[3].institutions[2].display_name | University of Ulsan |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Sung Jin Kim |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Urology, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung 25440, Republic of Korea |
| authorships[4].author.id | https://openalex.org/A5032025239 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-7815-4411 |
| authorships[4].author.display_name | Ahnryul Choi |
| authorships[4].countries | KR |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I163753206 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Biomedical Engineering, College of Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea |
| authorships[4].institutions[0].id | https://openalex.org/I163753206 |
| authorships[4].institutions[0].ror | https://ror.org/02wnxgj78 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I163753206 |
| authorships[4].institutions[0].country_code | KR |
| authorships[4].institutions[0].display_name | Chungbuk National University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Ahnryul Choi |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Biomedical Engineering, College of Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.3390/bioengineering12040367 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Optimization-Incorporated Deep Learning Strategy to Automate L3 Slice Detection and Abdominal Segmentation in Computed Tomography |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12422 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9983000159263611 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2741 |
| primary_topic.subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| primary_topic.display_name | Radiomics and Machine Learning in Medical Imaging |
| related_works | https://openalex.org/W3197954266, https://openalex.org/W4389009345, https://openalex.org/W3047746737, https://openalex.org/W3021454079, https://openalex.org/W1522196789, https://openalex.org/W4287691568, https://openalex.org/W4220718606, https://openalex.org/W2085143385, https://openalex.org/W2005489729, https://openalex.org/W3090294949 |
| cited_by_count | 0 |
| locations_count | 4 |
| best_oa_location.id | doi:10.3390/bioengineering12040367 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210179121 |
| best_oa_location.source.issn | 2306-5354 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2306-5354 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Bioengineering |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Bioengineering |
| best_oa_location.landing_page_url | https://doi.org/10.3390/bioengineering12040367 |
| primary_location.id | doi:10.3390/bioengineering12040367 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210179121 |
| primary_location.source.issn | 2306-5354 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2306-5354 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Bioengineering |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Bioengineering |
| primary_location.landing_page_url | https://doi.org/10.3390/bioengineering12040367 |
| publication_date | 2025-03-31 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W3128646645, https://openalex.org/W2889646458, https://openalex.org/W4206841660, https://openalex.org/W2165200432, https://openalex.org/W2073924079, https://openalex.org/W2791926234, https://openalex.org/W4390881824, https://openalex.org/W2978077164, https://openalex.org/W2920009718, https://openalex.org/W4387969661, https://openalex.org/W3194802937, https://openalex.org/W1993399595, https://openalex.org/W2890365610, https://openalex.org/W2786055437, https://openalex.org/W2793413123, https://openalex.org/W2097022747, https://openalex.org/W1684577264, https://openalex.org/W4220776545, https://openalex.org/W2616736149, https://openalex.org/W2944278013, https://openalex.org/W4320017429, https://openalex.org/W4404618602, https://openalex.org/W3049224424, https://openalex.org/W3082059448, https://openalex.org/W2989219518, https://openalex.org/W2055271333, https://openalex.org/W2027347092, https://openalex.org/W2917459525, https://openalex.org/W1791662188, https://openalex.org/W2604262106, https://openalex.org/W3120093105, https://openalex.org/W2194775991, https://openalex.org/W6639824700, https://openalex.org/W4321232185, https://openalex.org/W6797399245, https://openalex.org/W2965912480, https://openalex.org/W4283707144, https://openalex.org/W3000189979, https://openalex.org/W2127424726, https://openalex.org/W2790351242, https://openalex.org/W6682691769, https://openalex.org/W2963703197, https://openalex.org/W2003411126, https://openalex.org/W3014134727, https://openalex.org/W2102902846, https://openalex.org/W2268912046, https://openalex.org/W3169892788, https://openalex.org/W6638399216, https://openalex.org/W3030230491, https://openalex.org/W2059519407, https://openalex.org/W4391931174, https://openalex.org/W2944940987, https://openalex.org/W2643397491, https://openalex.org/W2905023912, https://openalex.org/W2963691377, https://openalex.org/W3211490618, https://openalex.org/W1901129140, https://openalex.org/W4294170691 |
| referenced_works_count | 58 |
| abstract_inverted_index.A | 123 |
| abstract_inverted_index.a | 3, 40, 64, 194 |
| abstract_inverted_index.CT | 70, 101, 167 |
| abstract_inverted_index.In | 72, 96 |
| abstract_inverted_index.L3 | 11, 31, 60, 131, 160 |
| abstract_inverted_index.an | 77 |
| abstract_inverted_index.as | 35, 39, 88 |
| abstract_inverted_index.at | 29, 114 |
| abstract_inverted_index.is | 33 |
| abstract_inverted_index.it | 36 |
| abstract_inverted_index.of | 24, 67, 117, 119, 159, 166, 197 |
| abstract_inverted_index.to | 7, 56, 128, 142, 186, 199 |
| abstract_inverted_index.up | 198 |
| abstract_inverted_index.we | 75 |
| abstract_inverted_index.± | 189, 201 |
| abstract_inverted_index.150 | 107, 170 |
| abstract_inverted_index.The | 231 |
| abstract_inverted_index.and | 13, 26, 46, 54, 84, 110, 137, 152, 162, 172, 192, 224, 237, 244 |
| abstract_inverted_index.are | 52 |
| abstract_inverted_index.can | 37 |
| abstract_inverted_index.did | 211 |
| abstract_inverted_index.fat | 27 |
| abstract_inverted_index.for | 43, 203, 240 |
| abstract_inverted_index.may | 234 |
| abstract_inverted_index.not | 212 |
| abstract_inverted_index.the | 10, 30, 68, 100, 115, 130, 156, 178, 182, 208 |
| abstract_inverted_index.was | 103, 126 |
| abstract_inverted_index.(CT) | 20 |
| abstract_inverted_index.0.68 | 188 |
| abstract_inverted_index.1.26 | 190 |
| abstract_inverted_index.Asan | 121 |
| abstract_inverted_index.Dice | 195 |
| abstract_inverted_index.This | 0, 217 |
| abstract_inverted_index.data | 168 |
| abstract_inverted_index.deep | 4, 93 |
| abstract_inverted_index.from | 17, 106, 169 |
| abstract_inverted_index.only | 63 |
| abstract_inverted_index.over | 207 |
| abstract_inverted_index.that | 80, 177, 210, 220 |
| abstract_inverted_index.this | 73, 97 |
| abstract_inverted_index.used | 127 |
| abstract_inverted_index.were | 140 |
| abstract_inverted_index.0.001 | 202 |
| abstract_inverted_index.0.987 | 200 |
| abstract_inverted_index.Unet, | 135 |
| abstract_inverted_index.class | 57, 85, 153, 222 |
| abstract_inverted_index.early | 241 |
| abstract_inverted_index.error | 185 |
| abstract_inverted_index.level | 32 |
| abstract_inverted_index.model | 227 |
| abstract_inverted_index.prone | 55 |
| abstract_inverted_index.ratio | 83 |
| abstract_inverted_index.serve | 38 |
| abstract_inverted_index.since | 59 |
| abstract_inverted_index.slice | 12, 183 |
| abstract_inverted_index.small | 65 |
| abstract_inverted_index.study | 1, 218 |
| abstract_inverted_index.while | 133 |
| abstract_inverted_index.cancer | 44, 109, 112, 174, 242 |
| abstract_inverted_index.design | 90, 215 |
| abstract_inverted_index.detect | 9, 129 |
| abstract_inverted_index.entire | 69 |
| abstract_inverted_index.manual | 50 |
| abstract_inverted_index.models | 139, 180, 209 |
| abstract_inverted_index.muscle | 25 |
| abstract_inverted_index.ratios | 151 |
| abstract_inverted_index.showed | 176 |
| abstract_inverted_index.slice, | 132 |
| abstract_inverted_index.slices | 61, 161, 191 |
| abstract_inverted_index.study, | 74, 99 |
| abstract_inverted_index.tissue | 205 |
| abstract_inverted_index.tuning | 226 |
| abstract_inverted_index.weight | 86 |
| abstract_inverted_index.within | 92 |
| abstract_inverted_index.Urology | 118 |
| abstract_inverted_index.bladder | 111, 173 |
| abstract_inverted_index.current | 49 |
| abstract_inverted_index.dataset | 102 |
| abstract_inverted_index.images. | 21 |
| abstract_inverted_index.models. | 95 |
| abstract_inverted_index.optimal | 149 |
| abstract_inverted_index.propose | 76 |
| abstract_inverted_index.provide | 235 |
| abstract_inverted_index.reduced | 181 |
| abstract_inverted_index.segment | 14, 143 |
| abstract_inverted_index.tissues | 16 |
| abstract_inverted_index.Accurate | 22 |
| abstract_inverted_index.Bayesian | 146 |
| abstract_inverted_index.However, | 48 |
| abstract_inverted_index.ResNet50 | 124 |
| abstract_inverted_index.achieved | 193 |
| abstract_inverted_index.approach | 233 |
| abstract_inverted_index.computed | 18 |
| abstract_inverted_index.confirms | 219 |
| abstract_inverted_index.consider | 213 |
| abstract_inverted_index.critical | 34 |
| abstract_inverted_index.dataset. | 71 |
| abstract_inverted_index.employed | 141 |
| abstract_inverted_index.enhances | 229 |
| abstract_inverted_index.fraction | 66 |
| abstract_inverted_index.learning | 94 |
| abstract_inverted_index.patients | 113, 175 |
| abstract_inverted_index.properly | 225 |
| abstract_inverted_index.proposed | 232 |
| abstract_inverted_index.prostate | 108, 171 |
| abstract_inverted_index.reliable | 236 |
| abstract_inverted_index.standard | 134 |
| abstract_inverted_index.strategy | 6, 79 |
| abstract_inverted_index.tissues. | 145, 164 |
| abstract_inverted_index.weights, | 154 |
| abstract_inverted_index.Gangneung | 120 |
| abstract_inverted_index.Hospital. | 122 |
| abstract_inverted_index.SegFormer | 138 |
| abstract_inverted_index.abdominal | 15, 144, 163, 204 |
| abstract_inverted_index.automated | 238 |
| abstract_inverted_index.balancing | 221 |
| abstract_inverted_index.biomarker | 42 |
| abstract_inverted_index.collected | 105 |
| abstract_inverted_index.detection | 184 |
| abstract_inverted_index.diagnosis | 45, 243 |
| abstract_inverted_index.optimized | 179 |
| abstract_inverted_index.planning. | 247 |
| abstract_inverted_index.privately | 104 |
| abstract_inverted_index.treatment | 246 |
| abstract_inverted_index.variables | 91 |
| abstract_inverted_index.Department | 116 |
| abstract_inverted_index.Evaluation | 165 |
| abstract_inverted_index.Swin-Unet, | 136 |
| abstract_inverted_index.adjustment | 87 |
| abstract_inverted_index.approaches | 51 |
| abstract_inverted_index.biomarkers | 239 |
| abstract_inverted_index.classifier | 125 |
| abstract_inverted_index.constitute | 62 |
| abstract_inverted_index.correction | 89, 214 |
| abstract_inverted_index.determines | 148 |
| abstract_inverted_index.imbalance, | 58 |
| abstract_inverted_index.imbalanced | 157 |
| abstract_inverted_index.integrates | 81 |
| abstract_inverted_index.introduces | 2 |
| abstract_inverted_index.mitigating | 155 |
| abstract_inverted_index.parameters | 228 |
| abstract_inverted_index.prognostic | 41 |
| abstract_inverted_index.tomography | 19 |
| abstract_inverted_index.treatment. | 47 |
| abstract_inverted_index.variables. | 216 |
| abstract_inverted_index.coefficient | 196 |
| abstract_inverted_index.composition | 28 |
| abstract_inverted_index.measurement | 23 |
| abstract_inverted_index.augmentation | 82, 150 |
| abstract_inverted_index.distribution | 158, 223 |
| abstract_inverted_index.optimization | 147 |
| abstract_inverted_index.performance. | 230 |
| abstract_inverted_index.personalized | 245 |
| abstract_inverted_index.approximately | 187 |
| abstract_inverted_index.automatically | 8 |
| abstract_inverted_index.retrospective | 98 |
| abstract_inverted_index.learning-based | 5 |
| abstract_inverted_index.time-consuming | 53 |
| abstract_inverted_index.optimization-incorporated | 78 |
| abstract_inverted_index.segmentation-improvements | 206 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.6299999952316284 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.14577111 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |