Optimization of multi-pulse sequences for nonlinear contrast agent imaging using a cMUT array Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.17615/a7z7-9x09
Capacitive micromachined ultrasonic transducer (cMUT) technology provides advantages such as wide frequency bandwidth, which can be exploited for contrast agent imaging. Nevertheless, the efficiency of traditional multi-pulse imaging schemes, such as pulse inversion (PI), remains limited because of the intrinsic nonlinear character of cMUTs. Recently, a new contrast imaging sequence, called bias voltage modulation sequence (BVM), had been specifically developed for cMUTs to suppress their unwanted nonlinear behavior. In this study, we propose to optimize contrast agent detection by combining the BVM sequence with PI and/or chirp reversal (CR). An aqueous dispersion of lipid encapsulated microbubbles was exposed to several combinations of multi-pulse imaging sequences. Approaches were evaluated in vitro using 9 inter-connected elements of a cMUT linear array (excitation frequency of 4 MHz; peak negative pressure of 100 kPa). For sequences using chirp excitations, a specific compression filter was designed to compress and extract several nonlinear components from the received microbubble responses. A satisfactory cancellation of the nonlinear signal from the source is achieved when BVM is combined with PI and CR. In comparison with PI and CR imaging modes alone, using sequences incorporating BVM increases the contrast-to-tissue ratio by 10.0 dB and 4.6 dB, respectively. Furthermore, the combination of BVM with CR and PI results in a significant increase of the contrast-to-noise ratio (+29 dB). This enhancement is attributed to the use of chirps as excitation signals and the improved preservation of several nonlinear components contained within the contrast agent response.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.17615/a7z7-9x09
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4300575175
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4300575175Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.17615/a7z7-9x09Digital Object Identifier
- Title
-
Optimization of multi-pulse sequences for nonlinear contrast agent imaging using a cMUT arrayWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-11-07Full publication date if available
- Authors
-
Anthony Novell, Christopher B. Arena, Sandeep K. Kasoji, Paul A. DaytonList of authors in order
- Landing page
-
https://doi.org/10.17615/a7z7-9x09Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.17615/a7z7-9x09Direct OA link when available
- Concepts
-
Contrast (vision), Nonlinear system, Pulse (music), Acoustics, Computer science, Physics, Artificial intelligence, Telecommunications, Detector, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4300575175 |
|---|---|
| doi | https://doi.org/10.17615/a7z7-9x09 |
| ids.doi | https://doi.org/10.17615/a7z7-9x09 |
| ids.openalex | https://openalex.org/W4300575175 |
| fwci | 0.0 |
| type | article |
| title | Optimization of multi-pulse sequences for nonlinear contrast agent imaging using a cMUT array |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11324 |
| topics[0].field.id | https://openalex.org/fields/13 |
| topics[0].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[0].score | 0.9927999973297119 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1304 |
| topics[0].subfield.display_name | Biophysics |
| topics[0].display_name | Spectroscopy Techniques in Biomedical and Chemical Research |
| topics[1].id | https://openalex.org/T10977 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9869999885559082 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | Optical Imaging and Spectroscopy Techniques |
| topics[2].id | https://openalex.org/T11196 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9674000144004822 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2204 |
| topics[2].subfield.display_name | Biomedical Engineering |
| topics[2].display_name | Non-Invasive Vital Sign Monitoring |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2776502983 |
| concepts[0].level | 2 |
| concepts[0].score | 0.780443549156189 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q690182 |
| concepts[0].display_name | Contrast (vision) |
| concepts[1].id | https://openalex.org/C158622935 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5515218377113342 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q660848 |
| concepts[1].display_name | Nonlinear system |
| concepts[2].id | https://openalex.org/C2780167933 |
| concepts[2].level | 3 |
| concepts[2].score | 0.4732777774333954 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1550652 |
| concepts[2].display_name | Pulse (music) |
| concepts[3].id | https://openalex.org/C24890656 |
| concepts[3].level | 1 |
| concepts[3].score | 0.3788858652114868 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q82811 |
| concepts[3].display_name | Acoustics |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.3725794553756714 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C121332964 |
| concepts[5].level | 0 |
| concepts[5].score | 0.24963834881782532 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[5].display_name | Physics |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.2435726821422577 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C76155785 |
| concepts[7].level | 1 |
| concepts[7].score | 0.10346382856369019 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[7].display_name | Telecommunications |
| concepts[8].id | https://openalex.org/C94915269 |
| concepts[8].level | 2 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1834857 |
| concepts[8].display_name | Detector |
| concepts[9].id | https://openalex.org/C62520636 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[9].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/contrast |
| keywords[0].score | 0.780443549156189 |
| keywords[0].display_name | Contrast (vision) |
| keywords[1].id | https://openalex.org/keywords/nonlinear-system |
| keywords[1].score | 0.5515218377113342 |
| keywords[1].display_name | Nonlinear system |
| keywords[2].id | https://openalex.org/keywords/pulse |
| keywords[2].score | 0.4732777774333954 |
| keywords[2].display_name | Pulse (music) |
| keywords[3].id | https://openalex.org/keywords/acoustics |
| keywords[3].score | 0.3788858652114868 |
| keywords[3].display_name | Acoustics |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.3725794553756714 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/physics |
| keywords[5].score | 0.24963834881782532 |
| keywords[5].display_name | Physics |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.2435726821422577 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/telecommunications |
| keywords[7].score | 0.10346382856369019 |
| keywords[7].display_name | Telecommunications |
| language | en |
| locations[0].id | doi:10.17615/a7z7-9x09 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S7407051488 |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | UNC Libraries |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | |
| locations[0].raw_type | article-journal |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.17615/a7z7-9x09 |
| indexed_in | datacite |
| authorships[0].author.id | https://openalex.org/A5019924722 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3649-0956 |
| authorships[0].author.display_name | Anthony Novell |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Novell, Anthony |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5073838872 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9380-1194 |
| authorships[1].author.display_name | Christopher B. Arena |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Arena, Christopher B |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5048815205 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4219-3424 |
| authorships[2].author.display_name | Sandeep K. Kasoji |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Kasoji, Sandeep |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5084515264 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5757-6911 |
| authorships[3].author.display_name | Paul A. Dayton |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Dayton, Paul A |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.17615/a7z7-9x09 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Optimization of multi-pulse sequences for nonlinear contrast agent imaging using a cMUT array |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11324 |
| primary_topic.field.id | https://openalex.org/fields/13 |
| primary_topic.field.display_name | Biochemistry, Genetics and Molecular Biology |
| primary_topic.score | 0.9927999973297119 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1304 |
| primary_topic.subfield.display_name | Biophysics |
| primary_topic.display_name | Spectroscopy Techniques in Biomedical and Chemical Research |
| related_works | https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W2358668433, https://openalex.org/W2376932109, https://openalex.org/W2075740387, https://openalex.org/W2382290278, https://openalex.org/W2350741829, https://openalex.org/W2130043461, https://openalex.org/W2530322880 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.17615/a7z7-9x09 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S7407051488 |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | UNC Libraries |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | |
| best_oa_location.raw_type | article-journal |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.17615/a7z7-9x09 |
| primary_location.id | doi:10.17615/a7z7-9x09 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S7407051488 |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | UNC Libraries |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | |
| primary_location.raw_type | article-journal |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.17615/a7z7-9x09 |
| publication_date | 2020-11-07 |
| publication_year | 2020 |
| referenced_works_count | 0 |
| abstract_inverted_index.4 | 122 |
| abstract_inverted_index.9 | 111 |
| abstract_inverted_index.A | 153 |
| abstract_inverted_index.a | 45, 115, 135, 208 |
| abstract_inverted_index.An | 89 |
| abstract_inverted_index.CR | 178, 203 |
| abstract_inverted_index.In | 68, 173 |
| abstract_inverted_index.PI | 84, 170, 176, 205 |
| abstract_inverted_index.as | 9, 30, 226 |
| abstract_inverted_index.be | 15 |
| abstract_inverted_index.by | 78, 190 |
| abstract_inverted_index.dB | 192 |
| abstract_inverted_index.in | 108, 207 |
| abstract_inverted_index.is | 163, 167, 219 |
| abstract_inverted_index.of | 24, 37, 42, 92, 101, 114, 121, 127, 156, 200, 211, 224, 233 |
| abstract_inverted_index.to | 62, 73, 98, 141, 221 |
| abstract_inverted_index.we | 71 |
| abstract_inverted_index.100 | 128 |
| abstract_inverted_index.4.6 | 194 |
| abstract_inverted_index.BVM | 81, 166, 185, 201 |
| abstract_inverted_index.CR. | 172 |
| abstract_inverted_index.For | 130 |
| abstract_inverted_index.and | 143, 171, 177, 193, 204, 229 |
| abstract_inverted_index.can | 14 |
| abstract_inverted_index.dB, | 195 |
| abstract_inverted_index.for | 17, 60 |
| abstract_inverted_index.had | 56 |
| abstract_inverted_index.new | 46 |
| abstract_inverted_index.the | 22, 38, 80, 149, 157, 161, 187, 198, 212, 222, 230, 239 |
| abstract_inverted_index.use | 223 |
| abstract_inverted_index.was | 96, 139 |
| abstract_inverted_index.(+29 | 215 |
| abstract_inverted_index.10.0 | 191 |
| abstract_inverted_index.MHz; | 123 |
| abstract_inverted_index.This | 217 |
| abstract_inverted_index.been | 57 |
| abstract_inverted_index.bias | 51 |
| abstract_inverted_index.cMUT | 116 |
| abstract_inverted_index.dB). | 216 |
| abstract_inverted_index.from | 148, 160 |
| abstract_inverted_index.peak | 124 |
| abstract_inverted_index.such | 8, 29 |
| abstract_inverted_index.this | 69 |
| abstract_inverted_index.were | 106 |
| abstract_inverted_index.when | 165 |
| abstract_inverted_index.wide | 10 |
| abstract_inverted_index.with | 83, 169, 175, 202 |
| abstract_inverted_index.(CR). | 88 |
| abstract_inverted_index.(PI), | 33 |
| abstract_inverted_index.agent | 19, 76, 241 |
| abstract_inverted_index.array | 118 |
| abstract_inverted_index.cMUTs | 61 |
| abstract_inverted_index.chirp | 86, 133 |
| abstract_inverted_index.kPa). | 129 |
| abstract_inverted_index.lipid | 93 |
| abstract_inverted_index.modes | 180 |
| abstract_inverted_index.pulse | 31 |
| abstract_inverted_index.ratio | 189, 214 |
| abstract_inverted_index.their | 64 |
| abstract_inverted_index.using | 110, 132, 182 |
| abstract_inverted_index.vitro | 109 |
| abstract_inverted_index.which | 13 |
| abstract_inverted_index.(BVM), | 55 |
| abstract_inverted_index.(cMUT) | 4 |
| abstract_inverted_index.alone, | 181 |
| abstract_inverted_index.and/or | 85 |
| abstract_inverted_index.cMUTs. | 43 |
| abstract_inverted_index.called | 50 |
| abstract_inverted_index.chirps | 225 |
| abstract_inverted_index.filter | 138 |
| abstract_inverted_index.linear | 117 |
| abstract_inverted_index.signal | 159 |
| abstract_inverted_index.source | 162 |
| abstract_inverted_index.study, | 70 |
| abstract_inverted_index.within | 238 |
| abstract_inverted_index.aqueous | 90 |
| abstract_inverted_index.because | 36 |
| abstract_inverted_index.exposed | 97 |
| abstract_inverted_index.extract | 144 |
| abstract_inverted_index.imaging | 27, 48, 103, 179 |
| abstract_inverted_index.limited | 35 |
| abstract_inverted_index.propose | 72 |
| abstract_inverted_index.remains | 34 |
| abstract_inverted_index.results | 206 |
| abstract_inverted_index.several | 99, 145, 234 |
| abstract_inverted_index.signals | 228 |
| abstract_inverted_index.voltage | 52 |
| abstract_inverted_index.achieved | 164 |
| abstract_inverted_index.combined | 168 |
| abstract_inverted_index.compress | 142 |
| abstract_inverted_index.contrast | 18, 47, 75, 240 |
| abstract_inverted_index.designed | 140 |
| abstract_inverted_index.elements | 113 |
| abstract_inverted_index.imaging. | 20 |
| abstract_inverted_index.improved | 231 |
| abstract_inverted_index.increase | 210 |
| abstract_inverted_index.negative | 125 |
| abstract_inverted_index.optimize | 74 |
| abstract_inverted_index.pressure | 126 |
| abstract_inverted_index.provides | 6 |
| abstract_inverted_index.received | 150 |
| abstract_inverted_index.reversal | 87 |
| abstract_inverted_index.schemes, | 28 |
| abstract_inverted_index.sequence | 54, 82 |
| abstract_inverted_index.specific | 136 |
| abstract_inverted_index.suppress | 63 |
| abstract_inverted_index.unwanted | 65 |
| abstract_inverted_index.Recently, | 44 |
| abstract_inverted_index.behavior. | 67 |
| abstract_inverted_index.character | 41 |
| abstract_inverted_index.combining | 79 |
| abstract_inverted_index.contained | 237 |
| abstract_inverted_index.detection | 77 |
| abstract_inverted_index.developed | 59 |
| abstract_inverted_index.evaluated | 107 |
| abstract_inverted_index.exploited | 16 |
| abstract_inverted_index.frequency | 11, 120 |
| abstract_inverted_index.increases | 186 |
| abstract_inverted_index.intrinsic | 39 |
| abstract_inverted_index.inversion | 32 |
| abstract_inverted_index.nonlinear | 40, 66, 146, 158, 235 |
| abstract_inverted_index.response. | 242 |
| abstract_inverted_index.sequence, | 49 |
| abstract_inverted_index.sequences | 131, 183 |
| abstract_inverted_index.Approaches | 105 |
| abstract_inverted_index.Capacitive | 0 |
| abstract_inverted_index.advantages | 7 |
| abstract_inverted_index.attributed | 220 |
| abstract_inverted_index.bandwidth, | 12 |
| abstract_inverted_index.comparison | 174 |
| abstract_inverted_index.components | 147, 236 |
| abstract_inverted_index.dispersion | 91 |
| abstract_inverted_index.efficiency | 23 |
| abstract_inverted_index.excitation | 227 |
| abstract_inverted_index.modulation | 53 |
| abstract_inverted_index.responses. | 152 |
| abstract_inverted_index.sequences. | 104 |
| abstract_inverted_index.technology | 5 |
| abstract_inverted_index.transducer | 3 |
| abstract_inverted_index.ultrasonic | 2 |
| abstract_inverted_index.(excitation | 119 |
| abstract_inverted_index.combination | 199 |
| abstract_inverted_index.compression | 137 |
| abstract_inverted_index.enhancement | 218 |
| abstract_inverted_index.microbubble | 151 |
| abstract_inverted_index.multi-pulse | 26, 102 |
| abstract_inverted_index.significant | 209 |
| abstract_inverted_index.traditional | 25 |
| abstract_inverted_index.Furthermore, | 197 |
| abstract_inverted_index.cancellation | 155 |
| abstract_inverted_index.combinations | 100 |
| abstract_inverted_index.encapsulated | 94 |
| abstract_inverted_index.excitations, | 134 |
| abstract_inverted_index.microbubbles | 95 |
| abstract_inverted_index.preservation | 232 |
| abstract_inverted_index.satisfactory | 154 |
| abstract_inverted_index.specifically | 58 |
| abstract_inverted_index.Nevertheless, | 21 |
| abstract_inverted_index.incorporating | 184 |
| abstract_inverted_index.micromachined | 1 |
| abstract_inverted_index.respectively. | 196 |
| abstract_inverted_index.inter-connected | 112 |
| abstract_inverted_index.contrast-to-noise | 213 |
| abstract_inverted_index.contrast-to-tissue | 188 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.14993382 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |