Optimization of the Drying Process for Gamma-Irradiated Mushroom Slices Using Mathematical Models and Machine Learning Algorithms Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.3390/agriculture14122351
Concerns over dried product quality and energy consumption have prompted researchers to explore integrated techniques for improving quality and reducing energy use. This study investigates the effect of gamma irradiation pretreatment (0, 1.2, 2.4, and 3.6 kGy) on button mushroom slices, followed by thin-layer drying at 50, 60, and 70 °C. The results indicated that increasing irradiation dose and drying temperature significantly reduced drying time. The Midilli model provided the best fıt to the drying data (R2 = 0.9969–0.9998). Artificial neural networks (ANN) accurately predicted moisture variations, achieving R2 = 0.9975 and RMSE = 0.0220. The Support Vector Machine (SVM) algorithm, employing the Pearson universal kernel in normalized mode, also performed well, with R2 = 0.9939 and RMSE = 0.0344. Similarly, in the k-nearest neighbors (kNN) algorithm with three neighbors (k = 3), the R2 and RMSE values were 0.9888 and 0.0458, respectively. Gamma irradiation enhanced the effective diffusion coefficient (Deff) to 10.796 × 10−8 m2/s, and reduced activation energy (Ea) to 11.09 kJ/mol. The highest heat utilization efficiency (41.1%) was observed at 3.6 kGy and 50 °C. These findings highlight the potential of integrating gamma irradiation pretreatment and advanced drying techniques to optimize energy use and improve the quality of dried mushroom slices.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/agriculture14122351
- https://www.mdpi.com/2077-0472/14/12/2351/pdf?version=1735014885
- OA Status
- gold
- Cited By
- 4
- References
- 70
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4405725303
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4405725303Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/agriculture14122351Digital Object Identifier
- Title
-
Optimization of the Drying Process for Gamma-Irradiated Mushroom Slices Using Mathematical Models and Machine Learning AlgorithmsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-12-20Full publication date if available
- Authors
-
Ehsan Fartash Naeimi, Mohammad Hadi Khoshtaghaza, K. Selvi, N. Ungureanu, Soleiman AbbasiList of authors in order
- Landing page
-
https://doi.org/10.3390/agriculture14122351Publisher landing page
- PDF URL
-
https://www.mdpi.com/2077-0472/14/12/2351/pdf?version=1735014885Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2077-0472/14/12/2351/pdf?version=1735014885Direct OA link when available
- Concepts
-
Mean squared error, Irradiation, Algorithm, Mushroom, Coefficient of determination, Machine learning, Artificial intelligence, Support vector machine, Materials science, Mathematics, Computer science, Chemistry, Biological system, Food science, Statistics, Physics, Nuclear physics, BiologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 4Per-year citation counts (last 5 years)
- References (count)
-
70Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4405725303 |
|---|---|
| doi | https://doi.org/10.3390/agriculture14122351 |
| ids.doi | https://doi.org/10.3390/agriculture14122351 |
| ids.openalex | https://openalex.org/W4405725303 |
| fwci | 2.94473536 |
| type | article |
| title | Optimization of the Drying Process for Gamma-Irradiated Mushroom Slices Using Mathematical Models and Machine Learning Algorithms |
| biblio.issue | 12 |
| biblio.volume | 14 |
| biblio.last_page | 2351 |
| biblio.first_page | 2351 |
| topics[0].id | https://openalex.org/T10650 |
| topics[0].field.id | https://openalex.org/fields/11 |
| topics[0].field.display_name | Agricultural and Biological Sciences |
| topics[0].score | 0.9631999731063843 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1106 |
| topics[0].subfield.display_name | Food Science |
| topics[0].display_name | Food Drying and Modeling |
| topics[1].id | https://openalex.org/T11085 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9420999884605408 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2736 |
| topics[1].subfield.display_name | Pharmacology |
| topics[1].display_name | Fungal Biology and Applications |
| topics[2].id | https://openalex.org/T10473 |
| topics[2].field.id | https://openalex.org/fields/11 |
| topics[2].field.display_name | Agricultural and Biological Sciences |
| topics[2].score | 0.9107000231742859 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1110 |
| topics[2].subfield.display_name | Plant Science |
| topics[2].display_name | Postharvest Quality and Shelf Life Management |
| is_xpac | False |
| apc_list.value | 1800 |
| apc_list.currency | CHF |
| apc_list.value_usd | 1949 |
| apc_paid.value | 1800 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 1949 |
| concepts[0].id | https://openalex.org/C139945424 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6146488189697266 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1940696 |
| concepts[0].display_name | Mean squared error |
| concepts[1].id | https://openalex.org/C111337013 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6042985916137695 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2737837 |
| concepts[1].display_name | Irradiation |
| concepts[2].id | https://openalex.org/C11413529 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6006873846054077 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[2].display_name | Algorithm |
| concepts[3].id | https://openalex.org/C2776474821 |
| concepts[3].level | 2 |
| concepts[3].score | 0.569876492023468 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q83093 |
| concepts[3].display_name | Mushroom |
| concepts[4].id | https://openalex.org/C128990827 |
| concepts[4].level | 2 |
| concepts[4].score | 0.49609360098838806 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q192830 |
| concepts[4].display_name | Coefficient of determination |
| concepts[5].id | https://openalex.org/C119857082 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4653606712818146 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[5].display_name | Machine learning |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4643903374671936 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C12267149 |
| concepts[7].level | 2 |
| concepts[7].score | 0.43262675404548645 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[7].display_name | Support vector machine |
| concepts[8].id | https://openalex.org/C192562407 |
| concepts[8].level | 0 |
| concepts[8].score | 0.3965947926044464 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[8].display_name | Materials science |
| concepts[9].id | https://openalex.org/C33923547 |
| concepts[9].level | 0 |
| concepts[9].score | 0.38726502656936646 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[9].display_name | Mathematics |
| concepts[10].id | https://openalex.org/C41008148 |
| concepts[10].level | 0 |
| concepts[10].score | 0.35855376720428467 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[10].display_name | Computer science |
| concepts[11].id | https://openalex.org/C185592680 |
| concepts[11].level | 0 |
| concepts[11].score | 0.32568496465682983 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[11].display_name | Chemistry |
| concepts[12].id | https://openalex.org/C186060115 |
| concepts[12].level | 1 |
| concepts[12].score | 0.3201359510421753 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q30336093 |
| concepts[12].display_name | Biological system |
| concepts[13].id | https://openalex.org/C31903555 |
| concepts[13].level | 1 |
| concepts[13].score | 0.24469318985939026 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1637030 |
| concepts[13].display_name | Food science |
| concepts[14].id | https://openalex.org/C105795698 |
| concepts[14].level | 1 |
| concepts[14].score | 0.20401164889335632 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[14].display_name | Statistics |
| concepts[15].id | https://openalex.org/C121332964 |
| concepts[15].level | 0 |
| concepts[15].score | 0.18276119232177734 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[15].display_name | Physics |
| concepts[16].id | https://openalex.org/C185544564 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q81197 |
| concepts[16].display_name | Nuclear physics |
| concepts[17].id | https://openalex.org/C86803240 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[17].display_name | Biology |
| keywords[0].id | https://openalex.org/keywords/mean-squared-error |
| keywords[0].score | 0.6146488189697266 |
| keywords[0].display_name | Mean squared error |
| keywords[1].id | https://openalex.org/keywords/irradiation |
| keywords[1].score | 0.6042985916137695 |
| keywords[1].display_name | Irradiation |
| keywords[2].id | https://openalex.org/keywords/algorithm |
| keywords[2].score | 0.6006873846054077 |
| keywords[2].display_name | Algorithm |
| keywords[3].id | https://openalex.org/keywords/mushroom |
| keywords[3].score | 0.569876492023468 |
| keywords[3].display_name | Mushroom |
| keywords[4].id | https://openalex.org/keywords/coefficient-of-determination |
| keywords[4].score | 0.49609360098838806 |
| keywords[4].display_name | Coefficient of determination |
| keywords[5].id | https://openalex.org/keywords/machine-learning |
| keywords[5].score | 0.4653606712818146 |
| keywords[5].display_name | Machine learning |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.4643903374671936 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/support-vector-machine |
| keywords[7].score | 0.43262675404548645 |
| keywords[7].display_name | Support vector machine |
| keywords[8].id | https://openalex.org/keywords/materials-science |
| keywords[8].score | 0.3965947926044464 |
| keywords[8].display_name | Materials science |
| keywords[9].id | https://openalex.org/keywords/mathematics |
| keywords[9].score | 0.38726502656936646 |
| keywords[9].display_name | Mathematics |
| keywords[10].id | https://openalex.org/keywords/computer-science |
| keywords[10].score | 0.35855376720428467 |
| keywords[10].display_name | Computer science |
| keywords[11].id | https://openalex.org/keywords/chemistry |
| keywords[11].score | 0.32568496465682983 |
| keywords[11].display_name | Chemistry |
| keywords[12].id | https://openalex.org/keywords/biological-system |
| keywords[12].score | 0.3201359510421753 |
| keywords[12].display_name | Biological system |
| keywords[13].id | https://openalex.org/keywords/food-science |
| keywords[13].score | 0.24469318985939026 |
| keywords[13].display_name | Food science |
| keywords[14].id | https://openalex.org/keywords/statistics |
| keywords[14].score | 0.20401164889335632 |
| keywords[14].display_name | Statistics |
| keywords[15].id | https://openalex.org/keywords/physics |
| keywords[15].score | 0.18276119232177734 |
| keywords[15].display_name | Physics |
| language | en |
| locations[0].id | doi:10.3390/agriculture14122351 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210202585 |
| locations[0].source.issn | 2077-0472 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2077-0472 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Agriculture |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2077-0472/14/12/2351/pdf?version=1735014885 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Agriculture |
| locations[0].landing_page_url | https://doi.org/10.3390/agriculture14122351 |
| locations[1].id | pmh:oai:doaj.org/article:fec685783f394ddc862741714a909f28 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].source.host_organization_lineage | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Agriculture, Vol 14, Iss 12, p 2351 (2024) |
| locations[1].landing_page_url | https://doaj.org/article/fec685783f394ddc862741714a909f28 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5092365092 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7230-6365 |
| authorships[0].author.display_name | Ehsan Fartash Naeimi |
| authorships[0].countries | TR |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I227306068 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Agricultural Machinery and Technologies Engineering, Faculty of Agriculture, Ondokuz Mayıs University, 55139 Samsun, Türkiye |
| authorships[0].institutions[0].id | https://openalex.org/I227306068 |
| authorships[0].institutions[0].ror | https://ror.org/028k5qw24 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I227306068 |
| authorships[0].institutions[0].country_code | TR |
| authorships[0].institutions[0].display_name | Ondokuz Mayıs University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ehsan Fartash Naeimi |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Agricultural Machinery and Technologies Engineering, Faculty of Agriculture, Ondokuz Mayıs University, 55139 Samsun, Türkiye |
| authorships[1].author.id | https://openalex.org/A5051912667 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6754-6401 |
| authorships[1].author.display_name | Mohammad Hadi Khoshtaghaza |
| authorships[1].countries | IR |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I1516879 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Biosystems Engineering, Faculty of Agriculture, Tarbiat Modares University, Tehran 14115-336, Iran |
| authorships[1].institutions[0].id | https://openalex.org/I1516879 |
| authorships[1].institutions[0].ror | https://ror.org/03mwgfy56 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I1516879 |
| authorships[1].institutions[0].country_code | IR |
| authorships[1].institutions[0].display_name | Tarbiat Modares University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Mohammad Hadi Khoshtaghaza |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Department of Biosystems Engineering, Faculty of Agriculture, Tarbiat Modares University, Tehran 14115-336, Iran |
| authorships[2].author.id | https://openalex.org/A5039781628 |
| authorships[2].author.orcid | https://orcid.org/0009-0006-5389-7538 |
| authorships[2].author.display_name | K. Selvi |
| authorships[2].countries | TR |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I227306068 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Agricultural Machinery and Technologies Engineering, Faculty of Agriculture, Ondokuz Mayıs University, 55139 Samsun, Türkiye |
| authorships[2].institutions[0].id | https://openalex.org/I227306068 |
| authorships[2].institutions[0].ror | https://ror.org/028k5qw24 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I227306068 |
| authorships[2].institutions[0].country_code | TR |
| authorships[2].institutions[0].display_name | Ondokuz Mayıs University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Kemal Çağatay Selvi |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Agricultural Machinery and Technologies Engineering, Faculty of Agriculture, Ondokuz Mayıs University, 55139 Samsun, Türkiye |
| authorships[3].author.id | https://openalex.org/A5031601891 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-4404-6719 |
| authorships[3].author.display_name | N. Ungureanu |
| authorships[3].countries | RO |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I61641377 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Biotechnical Systems, Faculty of Biotechnical Systems Engineering, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania |
| authorships[3].institutions[0].id | https://openalex.org/I61641377 |
| authorships[3].institutions[0].ror | https://ror.org/0558j5q12 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I61641377 |
| authorships[3].institutions[0].country_code | RO |
| authorships[3].institutions[0].display_name | Universitatea Națională de Știință și Tehnologie Politehnica București |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Nicoleta Ungureanu |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | Department of Biotechnical Systems, Faculty of Biotechnical Systems Engineering, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania |
| authorships[4].author.id | https://openalex.org/A5033205789 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-1503-2227 |
| authorships[4].author.display_name | Soleiman Abbasi |
| authorships[4].countries | IR |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I1516879 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Food Science and Technology, Faculty of Agriculture, Tarbiat Modares University, Tehran 14115-336, Iran |
| authorships[4].institutions[0].id | https://openalex.org/I1516879 |
| authorships[4].institutions[0].ror | https://ror.org/03mwgfy56 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I1516879 |
| authorships[4].institutions[0].country_code | IR |
| authorships[4].institutions[0].display_name | Tarbiat Modares University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Soleiman Abbasi |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Food Science and Technology, Faculty of Agriculture, Tarbiat Modares University, Tehran 14115-336, Iran |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2077-0472/14/12/2351/pdf?version=1735014885 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Optimization of the Drying Process for Gamma-Irradiated Mushroom Slices Using Mathematical Models and Machine Learning Algorithms |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10650 |
| primary_topic.field.id | https://openalex.org/fields/11 |
| primary_topic.field.display_name | Agricultural and Biological Sciences |
| primary_topic.score | 0.9631999731063843 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1106 |
| primary_topic.subfield.display_name | Food Science |
| primary_topic.display_name | Food Drying and Modeling |
| related_works | https://openalex.org/W4383721055, https://openalex.org/W2755828367, https://openalex.org/W2659933339, https://openalex.org/W2364784002, https://openalex.org/W2909099826, https://openalex.org/W4214620440, https://openalex.org/W4309845446, https://openalex.org/W4405179265, https://openalex.org/W4307238966, https://openalex.org/W3194565370 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 4 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3390/agriculture14122351 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210202585 |
| best_oa_location.source.issn | 2077-0472 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2077-0472 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Agriculture |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2077-0472/14/12/2351/pdf?version=1735014885 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Agriculture |
| best_oa_location.landing_page_url | https://doi.org/10.3390/agriculture14122351 |
| primary_location.id | doi:10.3390/agriculture14122351 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210202585 |
| primary_location.source.issn | 2077-0472 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2077-0472 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Agriculture |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2077-0472/14/12/2351/pdf?version=1735014885 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Agriculture |
| primary_location.landing_page_url | https://doi.org/10.3390/agriculture14122351 |
| publication_date | 2024-12-20 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W3118900424, https://openalex.org/W4402341141, https://openalex.org/W4361007343, https://openalex.org/W2969995409, https://openalex.org/W4394925358, https://openalex.org/W4318168321, https://openalex.org/W2032151455, https://openalex.org/W2003014564, https://openalex.org/W4393282319, https://openalex.org/W6806293945, https://openalex.org/W2913922021, https://openalex.org/W1975250525, https://openalex.org/W2054267046, https://openalex.org/W2035282345, https://openalex.org/W2966295776, https://openalex.org/W1712871670, https://openalex.org/W4304610449, https://openalex.org/W2047152237, https://openalex.org/W2028883251, https://openalex.org/W2983138566, https://openalex.org/W6854191673, https://openalex.org/W4396650272, https://openalex.org/W4312134913, https://openalex.org/W3088601241, https://openalex.org/W2916213364, https://openalex.org/W2058072177, https://openalex.org/W2045537362, https://openalex.org/W4319080202, https://openalex.org/W4391230637, https://openalex.org/W4405239555, https://openalex.org/W4292454346, https://openalex.org/W2113337167, https://openalex.org/W1964759273, https://openalex.org/W2101527419, https://openalex.org/W4213443827, https://openalex.org/W4404823455, https://openalex.org/W2051606730, https://openalex.org/W4385805305, https://openalex.org/W2554942203, https://openalex.org/W4210550600, https://openalex.org/W3134863641, https://openalex.org/W1990923491, https://openalex.org/W2176365357, https://openalex.org/W4224612673, https://openalex.org/W4385759352, https://openalex.org/W1966762583, https://openalex.org/W2039948265, https://openalex.org/W4313245688, https://openalex.org/W2028464226, https://openalex.org/W4401818446, https://openalex.org/W6784489414, https://openalex.org/W3023060691, https://openalex.org/W4306153733, https://openalex.org/W4313247118, https://openalex.org/W4392454956, https://openalex.org/W3030041253, https://openalex.org/W1912221300, https://openalex.org/W3183559147, https://openalex.org/W4385144462, https://openalex.org/W2556105512, https://openalex.org/W4404242713, https://openalex.org/W4402127879, https://openalex.org/W3209994197, https://openalex.org/W1979192232, https://openalex.org/W4391758332, https://openalex.org/W4391608242, https://openalex.org/W6674607406, https://openalex.org/W4249807765, https://openalex.org/W3199012993, https://openalex.org/W2526952881 |
| referenced_works_count | 70 |
| abstract_inverted_index.= | 77, 89, 93, 114, 118, 131 |
| abstract_inverted_index.(k | 130 |
| abstract_inverted_index.50 | 176 |
| abstract_inverted_index.70 | 49 |
| abstract_inverted_index.R2 | 88, 113, 134 |
| abstract_inverted_index.at | 45, 172 |
| abstract_inverted_index.by | 42 |
| abstract_inverted_index.in | 106, 121 |
| abstract_inverted_index.of | 27, 183, 200 |
| abstract_inverted_index.on | 37 |
| abstract_inverted_index.to | 11, 72, 151, 161, 192 |
| abstract_inverted_index.× | 153 |
| abstract_inverted_index.(0, | 31 |
| abstract_inverted_index.(R2 | 76 |
| abstract_inverted_index.3), | 132 |
| abstract_inverted_index.3.6 | 35, 173 |
| abstract_inverted_index.50, | 46 |
| abstract_inverted_index.60, | 47 |
| abstract_inverted_index.The | 51, 65, 95, 164 |
| abstract_inverted_index.and | 5, 18, 34, 48, 58, 91, 116, 135, 140, 156, 175, 188, 196 |
| abstract_inverted_index.for | 15 |
| abstract_inverted_index.kGy | 174 |
| abstract_inverted_index.the | 25, 69, 73, 102, 122, 133, 146, 181, 198 |
| abstract_inverted_index.use | 195 |
| abstract_inverted_index.was | 170 |
| abstract_inverted_index.(Ea) | 160 |
| abstract_inverted_index.1.2, | 32 |
| abstract_inverted_index.2.4, | 33 |
| abstract_inverted_index.RMSE | 92, 117, 136 |
| abstract_inverted_index.This | 22 |
| abstract_inverted_index.also | 109 |
| abstract_inverted_index.best | 70 |
| abstract_inverted_index.data | 75 |
| abstract_inverted_index.dose | 57 |
| abstract_inverted_index.fıt | 71 |
| abstract_inverted_index.have | 8 |
| abstract_inverted_index.heat | 166 |
| abstract_inverted_index.kGy) | 36 |
| abstract_inverted_index.over | 1 |
| abstract_inverted_index.that | 54 |
| abstract_inverted_index.use. | 21 |
| abstract_inverted_index.were | 138 |
| abstract_inverted_index.with | 112, 127 |
| abstract_inverted_index.°C. | 50, 177 |
| abstract_inverted_index.(ANN) | 82 |
| abstract_inverted_index.(SVM) | 99 |
| abstract_inverted_index.(kNN) | 125 |
| abstract_inverted_index.11.09 | 162 |
| abstract_inverted_index.Gamma | 143 |
| abstract_inverted_index.These | 178 |
| abstract_inverted_index.dried | 2, 201 |
| abstract_inverted_index.gamma | 28, 185 |
| abstract_inverted_index.m2/s, | 155 |
| abstract_inverted_index.mode, | 108 |
| abstract_inverted_index.model | 67 |
| abstract_inverted_index.study | 23 |
| abstract_inverted_index.three | 128 |
| abstract_inverted_index.time. | 64 |
| abstract_inverted_index.well, | 111 |
| abstract_inverted_index.(Deff) | 150 |
| abstract_inverted_index.0.9888 | 139 |
| abstract_inverted_index.0.9939 | 115 |
| abstract_inverted_index.0.9975 | 90 |
| abstract_inverted_index.10.796 | 152 |
| abstract_inverted_index.10−8 | 154 |
| abstract_inverted_index.Vector | 97 |
| abstract_inverted_index.button | 38 |
| abstract_inverted_index.drying | 44, 59, 63, 74, 190 |
| abstract_inverted_index.effect | 26 |
| abstract_inverted_index.energy | 6, 20, 159, 194 |
| abstract_inverted_index.kernel | 105 |
| abstract_inverted_index.neural | 80 |
| abstract_inverted_index.values | 137 |
| abstract_inverted_index.(41.1%) | 169 |
| abstract_inverted_index.0.0220. | 94 |
| abstract_inverted_index.0.0344. | 119 |
| abstract_inverted_index.0.0458, | 141 |
| abstract_inverted_index.Machine | 98 |
| abstract_inverted_index.Midilli | 66 |
| abstract_inverted_index.Pearson | 103 |
| abstract_inverted_index.Support | 96 |
| abstract_inverted_index.explore | 12 |
| abstract_inverted_index.highest | 165 |
| abstract_inverted_index.improve | 197 |
| abstract_inverted_index.kJ/mol. | 163 |
| abstract_inverted_index.product | 3 |
| abstract_inverted_index.quality | 4, 17, 199 |
| abstract_inverted_index.reduced | 62, 157 |
| abstract_inverted_index.results | 52 |
| abstract_inverted_index.slices, | 40 |
| abstract_inverted_index.slices. | 203 |
| abstract_inverted_index.Concerns | 0 |
| abstract_inverted_index.advanced | 189 |
| abstract_inverted_index.enhanced | 145 |
| abstract_inverted_index.findings | 179 |
| abstract_inverted_index.followed | 41 |
| abstract_inverted_index.moisture | 85 |
| abstract_inverted_index.mushroom | 39, 202 |
| abstract_inverted_index.networks | 81 |
| abstract_inverted_index.observed | 171 |
| abstract_inverted_index.optimize | 193 |
| abstract_inverted_index.prompted | 9 |
| abstract_inverted_index.provided | 68 |
| abstract_inverted_index.reducing | 19 |
| abstract_inverted_index.achieving | 87 |
| abstract_inverted_index.algorithm | 126 |
| abstract_inverted_index.diffusion | 148 |
| abstract_inverted_index.effective | 147 |
| abstract_inverted_index.employing | 101 |
| abstract_inverted_index.highlight | 180 |
| abstract_inverted_index.improving | 16 |
| abstract_inverted_index.indicated | 53 |
| abstract_inverted_index.k-nearest | 123 |
| abstract_inverted_index.neighbors | 124, 129 |
| abstract_inverted_index.performed | 110 |
| abstract_inverted_index.potential | 182 |
| abstract_inverted_index.predicted | 84 |
| abstract_inverted_index.universal | 104 |
| abstract_inverted_index.Artificial | 79 |
| abstract_inverted_index.Similarly, | 120 |
| abstract_inverted_index.accurately | 83 |
| abstract_inverted_index.activation | 158 |
| abstract_inverted_index.algorithm, | 100 |
| abstract_inverted_index.efficiency | 168 |
| abstract_inverted_index.increasing | 55 |
| abstract_inverted_index.integrated | 13 |
| abstract_inverted_index.normalized | 107 |
| abstract_inverted_index.techniques | 14, 191 |
| abstract_inverted_index.thin-layer | 43 |
| abstract_inverted_index.coefficient | 149 |
| abstract_inverted_index.consumption | 7 |
| abstract_inverted_index.integrating | 184 |
| abstract_inverted_index.irradiation | 29, 56, 144, 186 |
| abstract_inverted_index.researchers | 10 |
| abstract_inverted_index.temperature | 60 |
| abstract_inverted_index.utilization | 167 |
| abstract_inverted_index.variations, | 86 |
| abstract_inverted_index.investigates | 24 |
| abstract_inverted_index.pretreatment | 30, 187 |
| abstract_inverted_index.respectively. | 142 |
| abstract_inverted_index.significantly | 61 |
| abstract_inverted_index.0.9969–0.9998). | 78 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 97 |
| corresponding_author_ids | https://openalex.org/A5031601891, https://openalex.org/A5051912667 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I1516879, https://openalex.org/I61641377 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.9100000262260437 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile.value | 0.85633202 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |