Optimization of truss structures with two archive-boosted MOHO algorithm Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1016/j.aej.2025.02.032
This study identifies the Two-Archive Multi-Objective Hippopotamus Optimization Algorithm (MOHO2Arc) as an advanced multi-objective optimization method for optimizing five widely recognized truss structures. The primary objectives are to minimize the structures' mass and maximum nodal displacement. MOHO2Arc improves upon the standard Multi-Objective Hippopotamus Optimization (MOHO) by incorporating a two-archive strategy, significantly boosting solution diversity and optimization efficiency. A thorough comparative analysis was performed to evaluate the performance of the MOHO2Arc against other established multi-objective optimization algorithms. Performance metrics were applied to assess each algorithm's ability to generate diverse, high-quality solutions. The results demonstrate that MOHO2Arc substantially improves solution diversity and quality. Moreover, statistical analysis using Friedman's test further confirms that MOHO2Arc consistently outperforms the other algorithms in optimization tasks. This research highlights MOHO2Arc as an efficient and promising multi-objective truss structure optimization approach, offering notable advancements over current state-of-the-art techniques.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.aej.2025.02.032
- OA Status
- gold
- Cited By
- 12
- References
- 52
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4407675080
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4407675080Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.aej.2025.02.032Digital Object Identifier
- Title
-
Optimization of truss structures with two archive-boosted MOHO algorithmWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-02-18Full publication date if available
- Authors
-
Ghanshyam G. Tejani, Sunil Kumar Sharma, Nikunj Mashru, Pinank Patel, Pradeep JangirList of authors in order
- Landing page
-
https://doi.org/10.1016/j.aej.2025.02.032Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.aej.2025.02.032Direct OA link when available
- Concepts
-
Truss, Algorithm, Optimization algorithm, Computer science, Structural engineering, Mathematics, Mathematical optimization, EngineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
12Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 12Per-year citation counts (last 5 years)
- References (count)
-
52Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4407675080 |
|---|---|
| doi | https://doi.org/10.1016/j.aej.2025.02.032 |
| ids.doi | https://doi.org/10.1016/j.aej.2025.02.032 |
| ids.openalex | https://openalex.org/W4407675080 |
| fwci | 60.22074516 |
| type | article |
| title | Optimization of truss structures with two archive-boosted MOHO algorithm |
| biblio.issue | |
| biblio.volume | 120 |
| biblio.last_page | 317 |
| biblio.first_page | 296 |
| topics[0].id | https://openalex.org/T10848 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1703 |
| topics[0].subfield.display_name | Computational Theory and Mathematics |
| topics[0].display_name | Advanced Multi-Objective Optimization Algorithms |
| topics[1].id | https://openalex.org/T11115 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9994999766349792 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2205 |
| topics[1].subfield.display_name | Civil and Structural Engineering |
| topics[1].display_name | Topology Optimization in Engineering |
| topics[2].id | https://openalex.org/T10100 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.996399998664856 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Metaheuristic Optimization Algorithms Research |
| funders[0].id | https://openalex.org/F4320324553 |
| funders[0].ror | https://ror.org/01mcrnj60 |
| funders[0].display_name | Majmaah University |
| is_xpac | False |
| apc_list.value | 860 |
| apc_list.currency | USD |
| apc_list.value_usd | 860 |
| apc_paid.value | 860 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 860 |
| concepts[0].id | https://openalex.org/C173534245 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8246903419494629 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1328068 |
| concepts[0].display_name | Truss |
| concepts[1].id | https://openalex.org/C11413529 |
| concepts[1].level | 1 |
| concepts[1].score | 0.5539155602455139 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[1].display_name | Algorithm |
| concepts[2].id | https://openalex.org/C2987595161 |
| concepts[2].level | 2 |
| concepts[2].score | 0.4654584228992462 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[2].display_name | Optimization algorithm |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.42475634813308716 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C66938386 |
| concepts[4].level | 1 |
| concepts[4].score | 0.415606290102005 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q633538 |
| concepts[4].display_name | Structural engineering |
| concepts[5].id | https://openalex.org/C33923547 |
| concepts[5].level | 0 |
| concepts[5].score | 0.33882129192352295 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[5].display_name | Mathematics |
| concepts[6].id | https://openalex.org/C126255220 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3014757037162781 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[6].display_name | Mathematical optimization |
| concepts[7].id | https://openalex.org/C127413603 |
| concepts[7].level | 0 |
| concepts[7].score | 0.2629161477088928 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[7].display_name | Engineering |
| keywords[0].id | https://openalex.org/keywords/truss |
| keywords[0].score | 0.8246903419494629 |
| keywords[0].display_name | Truss |
| keywords[1].id | https://openalex.org/keywords/algorithm |
| keywords[1].score | 0.5539155602455139 |
| keywords[1].display_name | Algorithm |
| keywords[2].id | https://openalex.org/keywords/optimization-algorithm |
| keywords[2].score | 0.4654584228992462 |
| keywords[2].display_name | Optimization algorithm |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.42475634813308716 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/structural-engineering |
| keywords[4].score | 0.415606290102005 |
| keywords[4].display_name | Structural engineering |
| keywords[5].id | https://openalex.org/keywords/mathematics |
| keywords[5].score | 0.33882129192352295 |
| keywords[5].display_name | Mathematics |
| keywords[6].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[6].score | 0.3014757037162781 |
| keywords[6].display_name | Mathematical optimization |
| keywords[7].id | https://openalex.org/keywords/engineering |
| keywords[7].score | 0.2629161477088928 |
| keywords[7].display_name | Engineering |
| language | en |
| locations[0].id | doi:10.1016/j.aej.2025.02.032 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2764413287 |
| locations[0].source.issn | 1110-0168, 2090-2670 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1110-0168 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Alexandria Engineering Journal |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Alexandria Engineering Journal |
| locations[0].landing_page_url | https://doi.org/10.1016/j.aej.2025.02.032 |
| locations[1].id | pmh:oai:doaj.org/article:c5a6fda1faef45629d2d6634a2286ae8 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Alexandria Engineering Journal, Vol 120, Iss , Pp 296-317 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/c5a6fda1faef45629d2d6634a2286ae8 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5032058782 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9106-0313 |
| authorships[0].author.display_name | Ghanshyam G. Tejani |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ghanshyam G. Tejani |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5049689320 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1732-2677 |
| authorships[1].author.display_name | Sunil Kumar Sharma |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Sunil Kumar Sharma |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5083633863 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2103-0594 |
| authorships[2].author.display_name | Nikunj Mashru |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Nikunj Mashru |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5071231442 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-4799-6525 |
| authorships[3].author.display_name | Pinank Patel |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Pinank Patel |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5066826293 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-6944-4775 |
| authorships[4].author.display_name | Pradeep Jangir |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Pradeep Jangir |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.aej.2025.02.032 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Optimization of truss structures with two archive-boosted MOHO algorithm |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10848 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1703 |
| primary_topic.subfield.display_name | Computational Theory and Mathematics |
| primary_topic.display_name | Advanced Multi-Objective Optimization Algorithms |
| related_works | https://openalex.org/W2388549513, https://openalex.org/W2084393558, https://openalex.org/W2025497766, https://openalex.org/W2909672103, https://openalex.org/W2604391669, https://openalex.org/W2391519794, https://openalex.org/W2117940267, https://openalex.org/W4366549320, https://openalex.org/W4287863136, https://openalex.org/W3006015132 |
| cited_by_count | 12 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 12 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1016/j.aej.2025.02.032 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764413287 |
| best_oa_location.source.issn | 1110-0168, 2090-2670 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1110-0168 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Alexandria Engineering Journal |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Alexandria Engineering Journal |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.aej.2025.02.032 |
| primary_location.id | doi:10.1016/j.aej.2025.02.032 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2764413287 |
| primary_location.source.issn | 1110-0168, 2090-2670 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1110-0168 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Alexandria Engineering Journal |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Alexandria Engineering Journal |
| primary_location.landing_page_url | https://doi.org/10.1016/j.aej.2025.02.032 |
| publication_date | 2025-02-18 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2883618454, https://openalex.org/W4362452235, https://openalex.org/W6630399524, https://openalex.org/W2070775680, https://openalex.org/W2955731072, https://openalex.org/W6851806604, https://openalex.org/W2969539897, https://openalex.org/W2008635132, https://openalex.org/W4392121192, https://openalex.org/W4401942211, https://openalex.org/W4394787046, https://openalex.org/W4390128809, https://openalex.org/W4210747461, https://openalex.org/W4387745472, https://openalex.org/W4286501706, https://openalex.org/W4362506797, https://openalex.org/W4283696246, https://openalex.org/W4285492978, https://openalex.org/W4310137770, https://openalex.org/W4391014866, https://openalex.org/W2151554678, https://openalex.org/W6872780896, https://openalex.org/W4393043290, https://openalex.org/W4401691402, https://openalex.org/W2980497801, https://openalex.org/W4310553653, https://openalex.org/W4400187606, https://openalex.org/W3171409494, https://openalex.org/W4405892125, https://openalex.org/W2123808725, https://openalex.org/W4396747458, https://openalex.org/W6808983399, https://openalex.org/W4362582155, https://openalex.org/W3185346377, https://openalex.org/W1493761729, https://openalex.org/W4392298212, https://openalex.org/W4360977335, https://openalex.org/W2962947982, https://openalex.org/W2726724847, https://openalex.org/W2913477321, https://openalex.org/W2144982506, https://openalex.org/W2944904543, https://openalex.org/W2791738125, https://openalex.org/W2017686746, https://openalex.org/W1494807122, https://openalex.org/W2126105956, https://openalex.org/W2481453975, https://openalex.org/W2547816417, https://openalex.org/W4213231389, https://openalex.org/W4293417218, https://openalex.org/W4403397479, https://openalex.org/W3102715269 |
| referenced_works_count | 52 |
| abstract_inverted_index.A | 57 |
| abstract_inverted_index.a | 47 |
| abstract_inverted_index.an | 11, 124 |
| abstract_inverted_index.as | 10, 123 |
| abstract_inverted_index.by | 45 |
| abstract_inverted_index.in | 116 |
| abstract_inverted_index.of | 67 |
| abstract_inverted_index.to | 27, 63, 80, 85 |
| abstract_inverted_index.The | 23, 90 |
| abstract_inverted_index.and | 32, 54, 99, 126 |
| abstract_inverted_index.are | 26 |
| abstract_inverted_index.for | 16 |
| abstract_inverted_index.the | 3, 29, 39, 65, 68, 113 |
| abstract_inverted_index.was | 61 |
| abstract_inverted_index.This | 0, 119 |
| abstract_inverted_index.each | 82 |
| abstract_inverted_index.five | 18 |
| abstract_inverted_index.mass | 31 |
| abstract_inverted_index.over | 136 |
| abstract_inverted_index.test | 106 |
| abstract_inverted_index.that | 93, 109 |
| abstract_inverted_index.upon | 38 |
| abstract_inverted_index.were | 78 |
| abstract_inverted_index.nodal | 34 |
| abstract_inverted_index.other | 71, 114 |
| abstract_inverted_index.study | 1 |
| abstract_inverted_index.truss | 21, 129 |
| abstract_inverted_index.using | 104 |
| abstract_inverted_index.(MOHO) | 44 |
| abstract_inverted_index.assess | 81 |
| abstract_inverted_index.method | 15 |
| abstract_inverted_index.tasks. | 118 |
| abstract_inverted_index.widely | 19 |
| abstract_inverted_index.ability | 84 |
| abstract_inverted_index.against | 70 |
| abstract_inverted_index.applied | 79 |
| abstract_inverted_index.current | 137 |
| abstract_inverted_index.further | 107 |
| abstract_inverted_index.maximum | 33 |
| abstract_inverted_index.metrics | 77 |
| abstract_inverted_index.notable | 134 |
| abstract_inverted_index.primary | 24 |
| abstract_inverted_index.results | 91 |
| abstract_inverted_index.MOHO2Arc | 36, 69, 94, 110, 122 |
| abstract_inverted_index.advanced | 12 |
| abstract_inverted_index.analysis | 60, 103 |
| abstract_inverted_index.boosting | 51 |
| abstract_inverted_index.confirms | 108 |
| abstract_inverted_index.diverse, | 87 |
| abstract_inverted_index.evaluate | 64 |
| abstract_inverted_index.generate | 86 |
| abstract_inverted_index.improves | 37, 96 |
| abstract_inverted_index.minimize | 28 |
| abstract_inverted_index.offering | 133 |
| abstract_inverted_index.quality. | 100 |
| abstract_inverted_index.research | 120 |
| abstract_inverted_index.solution | 52, 97 |
| abstract_inverted_index.standard | 40 |
| abstract_inverted_index.thorough | 58 |
| abstract_inverted_index.Algorithm | 8 |
| abstract_inverted_index.Moreover, | 101 |
| abstract_inverted_index.approach, | 132 |
| abstract_inverted_index.diversity | 53, 98 |
| abstract_inverted_index.efficient | 125 |
| abstract_inverted_index.performed | 62 |
| abstract_inverted_index.promising | 127 |
| abstract_inverted_index.strategy, | 49 |
| abstract_inverted_index.structure | 130 |
| abstract_inverted_index.(MOHO2Arc) | 9 |
| abstract_inverted_index.Friedman's | 105 |
| abstract_inverted_index.algorithms | 115 |
| abstract_inverted_index.highlights | 121 |
| abstract_inverted_index.identifies | 2 |
| abstract_inverted_index.objectives | 25 |
| abstract_inverted_index.optimizing | 17 |
| abstract_inverted_index.recognized | 20 |
| abstract_inverted_index.solutions. | 89 |
| abstract_inverted_index.Performance | 76 |
| abstract_inverted_index.Two-Archive | 4 |
| abstract_inverted_index.algorithm's | 83 |
| abstract_inverted_index.algorithms. | 75 |
| abstract_inverted_index.comparative | 59 |
| abstract_inverted_index.demonstrate | 92 |
| abstract_inverted_index.efficiency. | 56 |
| abstract_inverted_index.established | 72 |
| abstract_inverted_index.outperforms | 112 |
| abstract_inverted_index.performance | 66 |
| abstract_inverted_index.statistical | 102 |
| abstract_inverted_index.structures' | 30 |
| abstract_inverted_index.structures. | 22 |
| abstract_inverted_index.techniques. | 139 |
| abstract_inverted_index.two-archive | 48 |
| abstract_inverted_index.Hippopotamus | 6, 42 |
| abstract_inverted_index.Optimization | 7, 43 |
| abstract_inverted_index.advancements | 135 |
| abstract_inverted_index.consistently | 111 |
| abstract_inverted_index.high-quality | 88 |
| abstract_inverted_index.optimization | 14, 55, 74, 117, 131 |
| abstract_inverted_index.displacement. | 35 |
| abstract_inverted_index.incorporating | 46 |
| abstract_inverted_index.significantly | 50 |
| abstract_inverted_index.substantially | 95 |
| abstract_inverted_index.Multi-Objective | 5, 41 |
| abstract_inverted_index.multi-objective | 13, 73, 128 |
| abstract_inverted_index.state-of-the-art | 138 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 98 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.99654453 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |