Optimization Strategies for Self-Supervised Learning in the Use of Unlabeled Data Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.53469/jtpes.2024.04(05).05
This study explores optimization strategies for self-supervised learning in the use of unlabeled data. By deeply analyzing existing research, we propose a novel method that significantly enhances the performance of algorithms on unlabeled data, achieving improved accuracy and generalization capabilities. Our method is validated across multiple datasets, demonstrating superior performance compared to traditional approaches. We also discuss how to optimize self-supervised learning strategies in the use of unlabeled data. Through improvements and optimizations of self-supervised learning algorithms, we introduce a new method for effectively utilizing unlabeled data for model training. Experimental results show significant performance improvements across various datasets, highlighting the method's robust generalization ability. This research is significant for advancing self-supervised learning technologies, providing valuable insights for related fields.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.53469/jtpes.2024.04(05).05
- https://centuryscipub.com/index.php/jtpes/article/download/588/499
- OA Status
- hybrid
- Cited By
- 18
- References
- 29
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4399539839
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4399539839Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.53469/jtpes.2024.04(05).05Digital Object Identifier
- Title
-
Optimization Strategies for Self-Supervised Learning in the Use of Unlabeled DataWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-05-23Full publication date if available
- Authors
-
Haopeng Zhao, Yan Lou, Qiming Xu, Zheng Feng, Ying Wu, Tao Huang, LiangHao Tan, Zichao LiList of authors in order
- Landing page
-
https://doi.org/10.53469/jtpes.2024.04(05).05Publisher landing page
- PDF URL
-
https://centuryscipub.com/index.php/jtpes/article/download/588/499Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://centuryscipub.com/index.php/jtpes/article/download/588/499Direct OA link when available
- Concepts
-
Computer science, Machine learning, Generalization, Artificial intelligence, Semi-supervised learning, Labeled data, Supervised learning, Artificial neural network, Mathematics, Mathematical analysisTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
18Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 6, 2024: 12Per-year citation counts (last 5 years)
- References (count)
-
29Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4399539839 |
|---|---|
| doi | https://doi.org/10.53469/jtpes.2024.04(05).05 |
| ids.doi | https://doi.org/10.53469/jtpes.2024.04(05).05 |
| ids.openalex | https://openalex.org/W4399539839 |
| fwci | 11.49801388 |
| type | article |
| title | Optimization Strategies for Self-Supervised Learning in the Use of Unlabeled Data |
| biblio.issue | 05 |
| biblio.volume | 4 |
| biblio.last_page | 39 |
| biblio.first_page | 30 |
| topics[0].id | https://openalex.org/T12535 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.993399977684021 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Machine Learning and Data Classification |
| topics[1].id | https://openalex.org/T11307 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9757000207901001 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Domain Adaptation and Few-Shot Learning |
| topics[2].id | https://openalex.org/T11550 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9667999744415283 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Text and Document Classification Technologies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7640964388847351 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C119857082 |
| concepts[1].level | 1 |
| concepts[1].score | 0.7382489442825317 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[1].display_name | Machine learning |
| concepts[2].id | https://openalex.org/C177148314 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7168885469436646 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q170084 |
| concepts[2].display_name | Generalization |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.67523193359375 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C58973888 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6677530407905579 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1041418 |
| concepts[4].display_name | Semi-supervised learning |
| concepts[5].id | https://openalex.org/C2776145971 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5785307288169861 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q30673951 |
| concepts[5].display_name | Labeled data |
| concepts[6].id | https://openalex.org/C136389625 |
| concepts[6].level | 3 |
| concepts[6].score | 0.5049982666969299 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q334384 |
| concepts[6].display_name | Supervised learning |
| concepts[7].id | https://openalex.org/C50644808 |
| concepts[7].level | 2 |
| concepts[7].score | 0.17357957363128662 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[7].display_name | Artificial neural network |
| concepts[8].id | https://openalex.org/C33923547 |
| concepts[8].level | 0 |
| concepts[8].score | 0.1183370053768158 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[8].display_name | Mathematics |
| concepts[9].id | https://openalex.org/C134306372 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[9].display_name | Mathematical analysis |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7640964388847351 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/machine-learning |
| keywords[1].score | 0.7382489442825317 |
| keywords[1].display_name | Machine learning |
| keywords[2].id | https://openalex.org/keywords/generalization |
| keywords[2].score | 0.7168885469436646 |
| keywords[2].display_name | Generalization |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.67523193359375 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/semi-supervised-learning |
| keywords[4].score | 0.6677530407905579 |
| keywords[4].display_name | Semi-supervised learning |
| keywords[5].id | https://openalex.org/keywords/labeled-data |
| keywords[5].score | 0.5785307288169861 |
| keywords[5].display_name | Labeled data |
| keywords[6].id | https://openalex.org/keywords/supervised-learning |
| keywords[6].score | 0.5049982666969299 |
| keywords[6].display_name | Supervised learning |
| keywords[7].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[7].score | 0.17357957363128662 |
| keywords[7].display_name | Artificial neural network |
| keywords[8].id | https://openalex.org/keywords/mathematics |
| keywords[8].score | 0.1183370053768158 |
| keywords[8].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.53469/jtpes.2024.04(05).05 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4387279032 |
| locations[0].source.issn | 2790-1505 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2790-1505 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of Theory and Practice of Engineering Science |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | cc-by-nc |
| locations[0].pdf_url | https://centuryscipub.com/index.php/jtpes/article/download/588/499 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Theory and Practice of Engineering Science |
| locations[0].landing_page_url | https://doi.org/10.53469/jtpes.2024.04(05).05 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5113408389 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Haopeng Zhao |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I12912129 |
| authorships[0].affiliations[0].raw_affiliation_string | New York University USA, Illinois Institute of Technology USA, Northeastern University USA, Northeastern University USA, University Maine Presque Isle USA, Massachusetts Institute of Technology USA, Independent Researcher USA, Canoakbit Alliance Inc. Canada |
| authorships[0].institutions[0].id | https://openalex.org/I12912129 |
| authorships[0].institutions[0].ror | https://ror.org/04t5xt781 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I12912129 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Northeastern University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Haopeng Zhao |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | New York University USA, Illinois Institute of Technology USA, Northeastern University USA, Northeastern University USA, University Maine Presque Isle USA, Massachusetts Institute of Technology USA, Independent Researcher USA, Canoakbit Alliance Inc. Canada |
| authorships[1].author.id | https://openalex.org/A5114175646 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Yan Lou |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I12912129 |
| authorships[1].affiliations[0].raw_affiliation_string | New York University USA, Illinois Institute of Technology USA, Northeastern University USA, Northeastern University USA, University Maine Presque Isle USA, Massachusetts Institute of Technology USA, Independent Researcher USA, Canoakbit Alliance Inc. Canada |
| authorships[1].institutions[0].id | https://openalex.org/I12912129 |
| authorships[1].institutions[0].ror | https://ror.org/04t5xt781 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I12912129 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Northeastern University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yan Lou |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | New York University USA, Illinois Institute of Technology USA, Northeastern University USA, Northeastern University USA, University Maine Presque Isle USA, Massachusetts Institute of Technology USA, Independent Researcher USA, Canoakbit Alliance Inc. Canada |
| authorships[2].author.id | https://openalex.org/A5101005666 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Qiming Xu |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I12912129 |
| authorships[2].affiliations[0].raw_affiliation_string | New York University USA, Illinois Institute of Technology USA, Northeastern University USA, Northeastern University USA, University Maine Presque Isle USA, Massachusetts Institute of Technology USA, Independent Researcher USA, Canoakbit Alliance Inc. Canada |
| authorships[2].institutions[0].id | https://openalex.org/I12912129 |
| authorships[2].institutions[0].ror | https://ror.org/04t5xt781 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I12912129 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Northeastern University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Qiming Xu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | New York University USA, Illinois Institute of Technology USA, Northeastern University USA, Northeastern University USA, University Maine Presque Isle USA, Massachusetts Institute of Technology USA, Independent Researcher USA, Canoakbit Alliance Inc. Canada |
| authorships[3].author.id | https://openalex.org/A5100950992 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Zheng Feng |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I12912129 |
| authorships[3].affiliations[0].raw_affiliation_string | New York University USA, Illinois Institute of Technology USA, Northeastern University USA, Northeastern University USA, University Maine Presque Isle USA, Massachusetts Institute of Technology USA, Independent Researcher USA, Canoakbit Alliance Inc. Canada |
| authorships[3].institutions[0].id | https://openalex.org/I12912129 |
| authorships[3].institutions[0].ror | https://ror.org/04t5xt781 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I12912129 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Northeastern University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Zheng Feng |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | New York University USA, Illinois Institute of Technology USA, Northeastern University USA, Northeastern University USA, University Maine Presque Isle USA, Massachusetts Institute of Technology USA, Independent Researcher USA, Canoakbit Alliance Inc. Canada |
| authorships[4].author.id | https://openalex.org/A5101780958 |
| authorships[4].author.orcid | https://orcid.org/0009-0001-6768-5118 |
| authorships[4].author.display_name | Ying Wu |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I12912129 |
| authorships[4].affiliations[0].raw_affiliation_string | New York University USA, Illinois Institute of Technology USA, Northeastern University USA, Northeastern University USA, University Maine Presque Isle USA, Massachusetts Institute of Technology USA, Independent Researcher USA, Canoakbit Alliance Inc. Canada |
| authorships[4].institutions[0].id | https://openalex.org/I12912129 |
| authorships[4].institutions[0].ror | https://ror.org/04t5xt781 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I12912129 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Northeastern University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Ying Wu |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | New York University USA, Illinois Institute of Technology USA, Northeastern University USA, Northeastern University USA, University Maine Presque Isle USA, Massachusetts Institute of Technology USA, Independent Researcher USA, Canoakbit Alliance Inc. Canada |
| authorships[5].author.id | https://openalex.org/A5101999501 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-9396-990X |
| authorships[5].author.display_name | Tao Huang |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I12912129 |
| authorships[5].affiliations[0].raw_affiliation_string | New York University USA, Illinois Institute of Technology USA, Northeastern University USA, Northeastern University USA, University Maine Presque Isle USA, Massachusetts Institute of Technology USA, Independent Researcher USA, Canoakbit Alliance Inc. Canada |
| authorships[5].institutions[0].id | https://openalex.org/I12912129 |
| authorships[5].institutions[0].ror | https://ror.org/04t5xt781 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I12912129 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | Northeastern University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Tao Huang |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | New York University USA, Illinois Institute of Technology USA, Northeastern University USA, Northeastern University USA, University Maine Presque Isle USA, Massachusetts Institute of Technology USA, Independent Researcher USA, Canoakbit Alliance Inc. Canada |
| authorships[6].author.id | https://openalex.org/A5101376768 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | LiangHao Tan |
| authorships[6].countries | US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I12912129 |
| authorships[6].affiliations[0].raw_affiliation_string | New York University USA, Illinois Institute of Technology USA, Northeastern University USA, Northeastern University USA, University Maine Presque Isle USA, Massachusetts Institute of Technology USA, Independent Researcher USA, Canoakbit Alliance Inc. Canada |
| authorships[6].institutions[0].id | https://openalex.org/I12912129 |
| authorships[6].institutions[0].ror | https://ror.org/04t5xt781 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I12912129 |
| authorships[6].institutions[0].country_code | US |
| authorships[6].institutions[0].display_name | Northeastern University |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | LiangHao Tan |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | New York University USA, Illinois Institute of Technology USA, Northeastern University USA, Northeastern University USA, University Maine Presque Isle USA, Massachusetts Institute of Technology USA, Independent Researcher USA, Canoakbit Alliance Inc. Canada |
| authorships[7].author.id | https://openalex.org/A5101460433 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-3186-1132 |
| authorships[7].author.display_name | Zichao Li |
| authorships[7].countries | US |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I12912129 |
| authorships[7].affiliations[0].raw_affiliation_string | New York University USA, Illinois Institute of Technology USA, Northeastern University USA, Northeastern University USA, University Maine Presque Isle USA, Massachusetts Institute of Technology USA, Independent Researcher USA, Canoakbit Alliance Inc. Canada |
| authorships[7].institutions[0].id | https://openalex.org/I12912129 |
| authorships[7].institutions[0].ror | https://ror.org/04t5xt781 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I12912129 |
| authorships[7].institutions[0].country_code | US |
| authorships[7].institutions[0].display_name | Northeastern University |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Zichao Li |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | New York University USA, Illinois Institute of Technology USA, Northeastern University USA, Northeastern University USA, University Maine Presque Isle USA, Massachusetts Institute of Technology USA, Independent Researcher USA, Canoakbit Alliance Inc. Canada |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://centuryscipub.com/index.php/jtpes/article/download/588/499 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Optimization Strategies for Self-Supervised Learning in the Use of Unlabeled Data |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12535 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.993399977684021 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Machine Learning and Data Classification |
| related_works | https://openalex.org/W4312414840, https://openalex.org/W34092691, https://openalex.org/W4390062853, https://openalex.org/W2794908468, https://openalex.org/W4389256085, https://openalex.org/W4206276646, https://openalex.org/W2943467239, https://openalex.org/W1571801203, https://openalex.org/W101422005, https://openalex.org/W192740413 |
| cited_by_count | 18 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 6 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 12 |
| locations_count | 1 |
| best_oa_location.id | doi:10.53469/jtpes.2024.04(05).05 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4387279032 |
| best_oa_location.source.issn | 2790-1505 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 2790-1505 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Journal of Theory and Practice of Engineering Science |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | cc-by-nc |
| best_oa_location.pdf_url | https://centuryscipub.com/index.php/jtpes/article/download/588/499 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Theory and Practice of Engineering Science |
| best_oa_location.landing_page_url | https://doi.org/10.53469/jtpes.2024.04(05).05 |
| primary_location.id | doi:10.53469/jtpes.2024.04(05).05 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4387279032 |
| primary_location.source.issn | 2790-1505 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2790-1505 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of Theory and Practice of Engineering Science |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | cc-by-nc |
| primary_location.pdf_url | https://centuryscipub.com/index.php/jtpes/article/download/588/499 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Theory and Practice of Engineering Science |
| primary_location.landing_page_url | https://doi.org/10.53469/jtpes.2024.04(05).05 |
| publication_date | 2024-05-23 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W4385547510, https://openalex.org/W4388116817, https://openalex.org/W4385547110, https://openalex.org/W4302760329, https://openalex.org/W4307663190, https://openalex.org/W4393160572, https://openalex.org/W4390649389, https://openalex.org/W4392972276, https://openalex.org/W4393148276, https://openalex.org/W4390901920, https://openalex.org/W4389565663, https://openalex.org/W3173937547, https://openalex.org/W4396787018, https://openalex.org/W4386566756, https://openalex.org/W4396818903, https://openalex.org/W4388624702, https://openalex.org/W4389575478, https://openalex.org/W4395955503, https://openalex.org/W4385681634, https://openalex.org/W4394947784, https://openalex.org/W4385767717, https://openalex.org/W4394946879, https://openalex.org/W3166938950, https://openalex.org/W4221143296, https://openalex.org/W4395443958, https://openalex.org/W4365796094, https://openalex.org/W4395443217, https://openalex.org/W4392011747, https://openalex.org/W4401608887 |
| referenced_works_count | 29 |
| abstract_inverted_index.a | 21, 79 |
| abstract_inverted_index.By | 14 |
| abstract_inverted_index.We | 54 |
| abstract_inverted_index.in | 8, 63 |
| abstract_inverted_index.is | 42, 107 |
| abstract_inverted_index.of | 11, 29, 66, 73 |
| abstract_inverted_index.on | 31 |
| abstract_inverted_index.to | 51, 58 |
| abstract_inverted_index.we | 19, 77 |
| abstract_inverted_index.Our | 40 |
| abstract_inverted_index.and | 37, 71 |
| abstract_inverted_index.for | 5, 82, 87, 109, 117 |
| abstract_inverted_index.how | 57 |
| abstract_inverted_index.new | 80 |
| abstract_inverted_index.the | 9, 27, 64, 100 |
| abstract_inverted_index.use | 10, 65 |
| abstract_inverted_index.This | 0, 105 |
| abstract_inverted_index.also | 55 |
| abstract_inverted_index.data | 86 |
| abstract_inverted_index.show | 92 |
| abstract_inverted_index.that | 24 |
| abstract_inverted_index.data, | 33 |
| abstract_inverted_index.data. | 13, 68 |
| abstract_inverted_index.model | 88 |
| abstract_inverted_index.novel | 22 |
| abstract_inverted_index.study | 1 |
| abstract_inverted_index.across | 44, 96 |
| abstract_inverted_index.deeply | 15 |
| abstract_inverted_index.method | 23, 41, 81 |
| abstract_inverted_index.robust | 102 |
| abstract_inverted_index.Through | 69 |
| abstract_inverted_index.discuss | 56 |
| abstract_inverted_index.fields. | 119 |
| abstract_inverted_index.propose | 20 |
| abstract_inverted_index.related | 118 |
| abstract_inverted_index.results | 91 |
| abstract_inverted_index.various | 97 |
| abstract_inverted_index.ability. | 104 |
| abstract_inverted_index.accuracy | 36 |
| abstract_inverted_index.compared | 50 |
| abstract_inverted_index.enhances | 26 |
| abstract_inverted_index.existing | 17 |
| abstract_inverted_index.explores | 2 |
| abstract_inverted_index.improved | 35 |
| abstract_inverted_index.insights | 116 |
| abstract_inverted_index.learning | 7, 61, 75, 112 |
| abstract_inverted_index.method's | 101 |
| abstract_inverted_index.multiple | 45 |
| abstract_inverted_index.optimize | 59 |
| abstract_inverted_index.research | 106 |
| abstract_inverted_index.superior | 48 |
| abstract_inverted_index.valuable | 115 |
| abstract_inverted_index.achieving | 34 |
| abstract_inverted_index.advancing | 110 |
| abstract_inverted_index.analyzing | 16 |
| abstract_inverted_index.datasets, | 46, 98 |
| abstract_inverted_index.introduce | 78 |
| abstract_inverted_index.providing | 114 |
| abstract_inverted_index.research, | 18 |
| abstract_inverted_index.training. | 89 |
| abstract_inverted_index.unlabeled | 12, 32, 67, 85 |
| abstract_inverted_index.utilizing | 84 |
| abstract_inverted_index.validated | 43 |
| abstract_inverted_index.algorithms | 30 |
| abstract_inverted_index.strategies | 4, 62 |
| abstract_inverted_index.algorithms, | 76 |
| abstract_inverted_index.approaches. | 53 |
| abstract_inverted_index.effectively | 83 |
| abstract_inverted_index.performance | 28, 49, 94 |
| abstract_inverted_index.significant | 93, 108 |
| abstract_inverted_index.traditional | 52 |
| abstract_inverted_index.Experimental | 90 |
| abstract_inverted_index.highlighting | 99 |
| abstract_inverted_index.improvements | 70, 95 |
| abstract_inverted_index.optimization | 3 |
| abstract_inverted_index.capabilities. | 39 |
| abstract_inverted_index.demonstrating | 47 |
| abstract_inverted_index.optimizations | 72 |
| abstract_inverted_index.significantly | 25 |
| abstract_inverted_index.technologies, | 113 |
| abstract_inverted_index.generalization | 38, 103 |
| abstract_inverted_index.self-supervised | 6, 60, 74, 111 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 98 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 8 |
| citation_normalized_percentile.value | 0.98002969 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |