Optimized convolutional neural network model for multilevel classification in leukemia diagnosis using Tversky loss Article Swipe
Leukemia diagnosis traditionally depends on time-intensive examination of blood cell morphology, a process prone to human error. To address these challenges, this study explores the use of convolutional neural networks (CNNs) optimized with the Tversky loss function for automated, multilevel image classification in leukemia diagnostics. The model was designed to tackle binary classification for distinguishing normal from abnormal cells, and multiclass classification for identifying leukemia subtypes, while addressing the challenges of imbalanced datasets inherent in medical imaging. Trained on publicly available leukemia image datasets, the CNN achieved high accuracy in both tasks, effectively capturing subtle morphological variations critical for precise diagnosis. By incorporating performance metrics such as accuracy, precision, and recall, the study highlights the model’s reliability and robustness across classification tasks. The findings underscore the potential of CNN-based tools in enhancing diagnostic accuracy and efficiency, paving the way for future innovations in leukemia diagnostics and broader medical imaging applications.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.36922/aih.4710
- OA Status
- hybrid
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4406772432
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4406772432Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.36922/aih.4710Digital Object Identifier
- Title
-
Optimized convolutional neural network model for multilevel classification in leukemia diagnosis using Tversky lossWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-22Full publication date if available
- Authors
-
Kumari Pritee, Rahul GargList of authors in order
- Landing page
-
https://doi.org/10.36922/aih.4710Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.36922/aih.4710Direct OA link when available
- Concepts
-
Convolutional neural network, Computer science, Artificial intelligence, Pattern recognition (psychology)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4406772432 |
|---|---|
| doi | https://doi.org/10.36922/aih.4710 |
| ids.doi | https://doi.org/10.36922/aih.4710 |
| ids.openalex | https://openalex.org/W4406772432 |
| fwci | 0.0 |
| type | article |
| title | Optimized convolutional neural network model for multilevel classification in leukemia diagnosis using Tversky loss |
| biblio.issue | 3 |
| biblio.volume | 2 |
| biblio.last_page | 63 |
| biblio.first_page | 63 |
| topics[0].id | https://openalex.org/T12874 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9527000188827515 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Digital Imaging for Blood Diseases |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C81363708 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6168510913848877 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[0].display_name | Convolutional neural network |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5847033262252808 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.44872257113456726 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C153180895 |
| concepts[3].level | 2 |
| concepts[3].score | 0.3625534474849701 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[3].display_name | Pattern recognition (psychology) |
| keywords[0].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[0].score | 0.6168510913848877 |
| keywords[0].display_name | Convolutional neural network |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.5847033262252808 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.44872257113456726 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/pattern-recognition |
| keywords[3].score | 0.3625534474849701 |
| keywords[3].display_name | Pattern recognition (psychology) |
| language | en |
| locations[0].id | doi:10.36922/aih.4710 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S5407045065 |
| locations[0].source.issn | 3029-2387, 3041-0894 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 3029-2387 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Artificial Intelligence in Health |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Artificial Intelligence in Health |
| locations[0].landing_page_url | https://doi.org/10.36922/aih.4710 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5116010309 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Kumari Pritee |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Kumari Pritee |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5024268264 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3684-8962 |
| authorships[1].author.display_name | Rahul Garg |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Rahul Dev Garg |
| authorships[1].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.36922/aih.4710 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Optimized convolutional neural network model for multilevel classification in leukemia diagnosis using Tversky loss |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12874 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9527000188827515 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Digital Imaging for Blood Diseases |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2033914206, https://openalex.org/W2042327336 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.36922/aih.4710 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S5407045065 |
| best_oa_location.source.issn | 3029-2387, 3041-0894 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 3029-2387 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Artificial Intelligence in Health |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Artificial Intelligence in Health |
| best_oa_location.landing_page_url | https://doi.org/10.36922/aih.4710 |
| primary_location.id | doi:10.36922/aih.4710 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S5407045065 |
| primary_location.source.issn | 3029-2387, 3041-0894 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 3029-2387 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Artificial Intelligence in Health |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Artificial Intelligence in Health |
| primary_location.landing_page_url | https://doi.org/10.36922/aih.4710 |
| publication_date | 2025-01-22 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 11 |
| abstract_inverted_index.By | 101 |
| abstract_inverted_index.To | 17 |
| abstract_inverted_index.as | 106 |
| abstract_inverted_index.in | 42, 74, 89, 130, 142 |
| abstract_inverted_index.of | 7, 26, 70, 127 |
| abstract_inverted_index.on | 4, 78 |
| abstract_inverted_index.to | 14, 49 |
| abstract_inverted_index.CNN | 85 |
| abstract_inverted_index.The | 45, 122 |
| abstract_inverted_index.and | 59, 109, 117, 134, 145 |
| abstract_inverted_index.for | 37, 53, 62, 98, 139 |
| abstract_inverted_index.the | 24, 33, 68, 84, 111, 114, 125, 137 |
| abstract_inverted_index.use | 25 |
| abstract_inverted_index.was | 47 |
| abstract_inverted_index.way | 138 |
| abstract_inverted_index.both | 90 |
| abstract_inverted_index.cell | 9 |
| abstract_inverted_index.from | 56 |
| abstract_inverted_index.high | 87 |
| abstract_inverted_index.loss | 35 |
| abstract_inverted_index.such | 105 |
| abstract_inverted_index.this | 21 |
| abstract_inverted_index.with | 32 |
| abstract_inverted_index.blood | 8 |
| abstract_inverted_index.human | 15 |
| abstract_inverted_index.image | 40, 82 |
| abstract_inverted_index.model | 46 |
| abstract_inverted_index.prone | 13 |
| abstract_inverted_index.study | 22, 112 |
| abstract_inverted_index.these | 19 |
| abstract_inverted_index.tools | 129 |
| abstract_inverted_index.while | 66 |
| abstract_inverted_index.(CNNs) | 30 |
| abstract_inverted_index.across | 119 |
| abstract_inverted_index.binary | 51 |
| abstract_inverted_index.cells, | 58 |
| abstract_inverted_index.error. | 16 |
| abstract_inverted_index.future | 140 |
| abstract_inverted_index.neural | 28 |
| abstract_inverted_index.normal | 55 |
| abstract_inverted_index.paving | 136 |
| abstract_inverted_index.subtle | 94 |
| abstract_inverted_index.tackle | 50 |
| abstract_inverted_index.tasks, | 91 |
| abstract_inverted_index.tasks. | 121 |
| abstract_inverted_index.Trained | 77 |
| abstract_inverted_index.Tversky | 34 |
| abstract_inverted_index.address | 18 |
| abstract_inverted_index.broader | 146 |
| abstract_inverted_index.depends | 3 |
| abstract_inverted_index.imaging | 148 |
| abstract_inverted_index.medical | 75, 147 |
| abstract_inverted_index.metrics | 104 |
| abstract_inverted_index.precise | 99 |
| abstract_inverted_index.process | 12 |
| abstract_inverted_index.recall, | 110 |
| abstract_inverted_index.Leukemia | 0 |
| abstract_inverted_index.abnormal | 57 |
| abstract_inverted_index.accuracy | 88, 133 |
| abstract_inverted_index.achieved | 86 |
| abstract_inverted_index.critical | 97 |
| abstract_inverted_index.datasets | 72 |
| abstract_inverted_index.designed | 48 |
| abstract_inverted_index.explores | 23 |
| abstract_inverted_index.findings | 123 |
| abstract_inverted_index.function | 36 |
| abstract_inverted_index.imaging. | 76 |
| abstract_inverted_index.inherent | 73 |
| abstract_inverted_index.leukemia | 43, 64, 81, 143 |
| abstract_inverted_index.networks | 29 |
| abstract_inverted_index.publicly | 79 |
| abstract_inverted_index.CNN-based | 128 |
| abstract_inverted_index.accuracy, | 107 |
| abstract_inverted_index.available | 80 |
| abstract_inverted_index.capturing | 93 |
| abstract_inverted_index.datasets, | 83 |
| abstract_inverted_index.diagnosis | 1 |
| abstract_inverted_index.enhancing | 131 |
| abstract_inverted_index.optimized | 31 |
| abstract_inverted_index.potential | 126 |
| abstract_inverted_index.subtypes, | 65 |
| abstract_inverted_index.addressing | 67 |
| abstract_inverted_index.automated, | 38 |
| abstract_inverted_index.challenges | 69 |
| abstract_inverted_index.diagnosis. | 100 |
| abstract_inverted_index.diagnostic | 132 |
| abstract_inverted_index.highlights | 113 |
| abstract_inverted_index.imbalanced | 71 |
| abstract_inverted_index.multiclass | 60 |
| abstract_inverted_index.multilevel | 39 |
| abstract_inverted_index.precision, | 108 |
| abstract_inverted_index.robustness | 118 |
| abstract_inverted_index.underscore | 124 |
| abstract_inverted_index.variations | 96 |
| abstract_inverted_index.challenges, | 20 |
| abstract_inverted_index.diagnostics | 144 |
| abstract_inverted_index.effectively | 92 |
| abstract_inverted_index.efficiency, | 135 |
| abstract_inverted_index.examination | 6 |
| abstract_inverted_index.identifying | 63 |
| abstract_inverted_index.innovations | 141 |
| abstract_inverted_index.morphology, | 10 |
| abstract_inverted_index.performance | 103 |
| abstract_inverted_index.reliability | 116 |
| abstract_inverted_index.diagnostics. | 44 |
| abstract_inverted_index.applications. | 149 |
| abstract_inverted_index.convolutional | 27 |
| abstract_inverted_index.incorporating | 102 |
| abstract_inverted_index.morphological | 95 |
| abstract_inverted_index.traditionally | 2 |
| abstract_inverted_index.classification | 41, 52, 61, 120 |
| abstract_inverted_index.distinguishing | 54 |
| abstract_inverted_index.time-intensive | 5 |
| abstract_inverted_index.model’s | 115 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile.value | 0.01711347 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |