Optimized dimension-reduction algorithm on input layer for diffractive neural networks Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1063/5.0279686
Diffractive neural network (DNN) has provided a novel solution to address complex artificial intelligence tasks due to its ultrahigh processing speed and parallel computing capability. However, traditional DNNs lack fine design of input layers, which limits their performance in miniaturized applications. Here, we propose an optimized dimension-reduction algorithm based on an improved Fisher score to directly filter the diffractive information injected into the network, enabling DNNs to obtain inputs with stronger resolving capabilities. Numerical results demonstrate that our approach achieves accuracy improvements of 5% and 7.3% on the MNIST and Fashion-MNIST classification datasets, respectively, compared to the uniform grid sampling method that is commonly used in the existing dimension-reduction DNNs. In addition, when addressing the issue of complex input image distortion, our method holds the accuracy advantage of 4.8% in the pincushion distorted MNIST dataset and expands it to 6.7% in the tangential distortion scenario. Our optimized dimension-reduction algorithm has effectively utilized the information in diffractive fields, providing an efficient solution to the miniaturization of DNNs and promoting their application prospects in wearable devices, industrial inspection, and autonomous driving systems.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1063/5.0279686
- OA Status
- gold
- References
- 42
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4412478294
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4412478294Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1063/5.0279686Digital Object Identifier
- Title
-
Optimized dimension-reduction algorithm on input layer for diffractive neural networksWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-07-01Full publication date if available
- Authors
-
Ruisi Li, Qian Ma, Ze Gu, Yuming Ning, Xinxin Gao, Tie Jun CuiList of authors in order
- Landing page
-
https://doi.org/10.1063/5.0279686Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1063/5.0279686Direct OA link when available
- Concepts
-
Reduction (mathematics), Dimension (graph theory), Dimensionality reduction, Algorithm, Artificial neural network, Layer (electronics), Computer science, Mathematics, Artificial intelligence, Materials science, Combinatorics, Nanotechnology, GeometryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
42Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4412478294 |
|---|---|
| doi | https://doi.org/10.1063/5.0279686 |
| ids.doi | https://doi.org/10.1063/5.0279686 |
| ids.openalex | https://openalex.org/W4412478294 |
| fwci | 0.0 |
| type | article |
| title | Optimized dimension-reduction algorithm on input layer for diffractive neural networks |
| awards[0].id | https://openalex.org/G379649844 |
| awards[0].funder_id | https://openalex.org/F4320335787 |
| awards[0].display_name | |
| awards[0].funder_award_id | 2242022R20017 |
| awards[0].funder_display_name | Fundamental Research Funds for the Central Universities |
| awards[1].id | https://openalex.org/G3226228001 |
| awards[1].funder_id | https://openalex.org/F4320327028 |
| awards[1].display_name | |
| awards[1].funder_award_id | K201924 |
| awards[1].funder_display_name | State Key Laboratory of Millimeter Waves |
| awards[2].id | https://openalex.org/G396427802 |
| awards[2].funder_id | https://openalex.org/F4320321543 |
| awards[2].display_name | |
| awards[2].funder_award_id | 2021M700761 |
| awards[2].funder_display_name | China Postdoctoral Science Foundation |
| awards[3].id | https://openalex.org/G4490799848 |
| awards[3].funder_id | https://openalex.org/F4320335777 |
| awards[3].display_name | |
| awards[3].funder_award_id | 2022YFA1404903 |
| awards[3].funder_display_name | National Key Research and Development Program of China |
| awards[4].id | https://openalex.org/G5124792243 |
| awards[4].funder_id | https://openalex.org/F4320335787 |
| awards[4].display_name | |
| awards[4].funder_award_id | 2242018R30001 |
| awards[4].funder_display_name | Fundamental Research Funds for the Central Universities |
| awards[5].id | https://openalex.org/G7600362582 |
| awards[5].funder_id | https://openalex.org/F4320321543 |
| awards[5].display_name | |
| awards[5].funder_award_id | 2022T150112 |
| awards[5].funder_display_name | China Postdoctoral Science Foundation |
| awards[6].id | https://openalex.org/G4098670754 |
| awards[6].funder_id | https://openalex.org/F4320335787 |
| awards[6].display_name | |
| awards[6].funder_award_id | 2242023K5002 |
| awards[6].funder_display_name | Fundamental Research Funds for the Central Universities |
| awards[7].id | https://openalex.org/G2394950313 |
| awards[7].funder_id | https://openalex.org/F4320321001 |
| awards[7].display_name | |
| awards[7].funder_award_id | 62288101 |
| awards[7].funder_display_name | National Natural Science Foundation of China |
| awards[8].id | https://openalex.org/G5041088774 |
| awards[8].funder_id | https://openalex.org/F4320321001 |
| awards[8].display_name | |
| awards[8].funder_award_id | 92167202 |
| awards[8].funder_display_name | National Natural Science Foundation of China |
| awards[9].id | https://openalex.org/G7210542546 |
| awards[9].funder_id | https://openalex.org/F4320322769 |
| awards[9].display_name | |
| awards[9].funder_award_id | BK20230822 |
| awards[9].funder_display_name | Natural Science Foundation of Jiangsu Province |
| awards[10].id | https://openalex.org/G1183999375 |
| awards[10].funder_id | https://openalex.org/F4320321001 |
| awards[10].display_name | |
| awards[10].funder_award_id | 62301147 |
| awards[10].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | 7 |
| biblio.volume | 10 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12611 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Neural Networks and Reservoir Computing |
| topics[1].id | https://openalex.org/T10299 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9965000152587891 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Photonic and Optical Devices |
| topics[2].id | https://openalex.org/T10232 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9872999787330627 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2208 |
| topics[2].subfield.display_name | Electrical and Electronic Engineering |
| topics[2].display_name | Optical Network Technologies |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| funders[1].id | https://openalex.org/F4320321543 |
| funders[1].ror | https://ror.org/0426zh255 |
| funders[1].display_name | China Postdoctoral Science Foundation |
| funders[2].id | https://openalex.org/F4320322769 |
| funders[2].ror | https://ror.org/01h0zpd94 |
| funders[2].display_name | Natural Science Foundation of Jiangsu Province |
| funders[3].id | https://openalex.org/F4320327028 |
| funders[3].ror | |
| funders[3].display_name | State Key Laboratory of Millimeter Waves |
| funders[4].id | https://openalex.org/F4320335777 |
| funders[4].ror | |
| funders[4].display_name | National Key Research and Development Program of China |
| funders[5].id | https://openalex.org/F4320335787 |
| funders[5].ror | |
| funders[5].display_name | Fundamental Research Funds for the Central Universities |
| is_xpac | False |
| apc_list.value | 2750 |
| apc_list.currency | USD |
| apc_list.value_usd | 2750 |
| apc_paid.value | 2750 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2750 |
| concepts[0].id | https://openalex.org/C111335779 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7382804155349731 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q3454686 |
| concepts[0].display_name | Reduction (mathematics) |
| concepts[1].id | https://openalex.org/C33676613 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6896151304244995 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q13415176 |
| concepts[1].display_name | Dimension (graph theory) |
| concepts[2].id | https://openalex.org/C70518039 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6467280387878418 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q16000077 |
| concepts[2].display_name | Dimensionality reduction |
| concepts[3].id | https://openalex.org/C11413529 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6443085670471191 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[3].display_name | Algorithm |
| concepts[4].id | https://openalex.org/C50644808 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6228650808334351 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[4].display_name | Artificial neural network |
| concepts[5].id | https://openalex.org/C2779227376 |
| concepts[5].level | 2 |
| concepts[5].score | 0.588179886341095 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q6505497 |
| concepts[5].display_name | Layer (electronics) |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.5052836537361145 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C33923547 |
| concepts[7].level | 0 |
| concepts[7].score | 0.2753566801548004 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[7].display_name | Mathematics |
| concepts[8].id | https://openalex.org/C154945302 |
| concepts[8].level | 1 |
| concepts[8].score | 0.2539752125740051 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[8].display_name | Artificial intelligence |
| concepts[9].id | https://openalex.org/C192562407 |
| concepts[9].level | 0 |
| concepts[9].score | 0.23537176847457886 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[9].display_name | Materials science |
| concepts[10].id | https://openalex.org/C114614502 |
| concepts[10].level | 1 |
| concepts[10].score | 0.10306912660598755 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[10].display_name | Combinatorics |
| concepts[11].id | https://openalex.org/C171250308 |
| concepts[11].level | 1 |
| concepts[11].score | 0.10074150562286377 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11468 |
| concepts[11].display_name | Nanotechnology |
| concepts[12].id | https://openalex.org/C2524010 |
| concepts[12].level | 1 |
| concepts[12].score | 0.07764804363250732 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[12].display_name | Geometry |
| keywords[0].id | https://openalex.org/keywords/reduction |
| keywords[0].score | 0.7382804155349731 |
| keywords[0].display_name | Reduction (mathematics) |
| keywords[1].id | https://openalex.org/keywords/dimension |
| keywords[1].score | 0.6896151304244995 |
| keywords[1].display_name | Dimension (graph theory) |
| keywords[2].id | https://openalex.org/keywords/dimensionality-reduction |
| keywords[2].score | 0.6467280387878418 |
| keywords[2].display_name | Dimensionality reduction |
| keywords[3].id | https://openalex.org/keywords/algorithm |
| keywords[3].score | 0.6443085670471191 |
| keywords[3].display_name | Algorithm |
| keywords[4].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[4].score | 0.6228650808334351 |
| keywords[4].display_name | Artificial neural network |
| keywords[5].id | https://openalex.org/keywords/layer |
| keywords[5].score | 0.588179886341095 |
| keywords[5].display_name | Layer (electronics) |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.5052836537361145 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/mathematics |
| keywords[7].score | 0.2753566801548004 |
| keywords[7].display_name | Mathematics |
| keywords[8].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[8].score | 0.2539752125740051 |
| keywords[8].display_name | Artificial intelligence |
| keywords[9].id | https://openalex.org/keywords/materials-science |
| keywords[9].score | 0.23537176847457886 |
| keywords[9].display_name | Materials science |
| keywords[10].id | https://openalex.org/keywords/combinatorics |
| keywords[10].score | 0.10306912660598755 |
| keywords[10].display_name | Combinatorics |
| keywords[11].id | https://openalex.org/keywords/nanotechnology |
| keywords[11].score | 0.10074150562286377 |
| keywords[11].display_name | Nanotechnology |
| keywords[12].id | https://openalex.org/keywords/geometry |
| keywords[12].score | 0.07764804363250732 |
| keywords[12].display_name | Geometry |
| language | en |
| locations[0].id | doi:10.1063/5.0279686 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210226744 |
| locations[0].source.issn | 2378-0967 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2378-0967 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | APL Photonics |
| locations[0].source.host_organization | https://openalex.org/P4310320061 |
| locations[0].source.host_organization_name | AIP Publishing |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320061, https://openalex.org/P4310320257 |
| locations[0].source.host_organization_lineage_names | AIP Publishing, American Institute of Physics |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | APL Photonics |
| locations[0].landing_page_url | https://doi.org/10.1063/5.0279686 |
| locations[1].id | pmh:oai:doaj.org/article:71f95b1225894a77a4b7e55aaccdd305 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | APL Photonics, Vol 10, Iss 7, Pp 070803-070803-12 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/71f95b1225894a77a4b7e55aaccdd305 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5036123120 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Ruisi Li |
| authorships[0].countries | BD |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210090971 |
| authorships[0].affiliations[0].raw_affiliation_string | State Key Laboratory of Millimeter Waves, Southeast University 1 , Nanjing 210096, |
| authorships[0].affiliations[1].raw_affiliation_string | Institute of Electromagnetic Space, Southeast University 2 , Nanjing 210096, |
| authorships[0].institutions[0].id | https://openalex.org/I4210090971 |
| authorships[0].institutions[0].ror | https://ror.org/00cf0ab87 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210090971 |
| authorships[0].institutions[0].country_code | BD |
| authorships[0].institutions[0].display_name | Southeast University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ruisi Li |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Institute of Electromagnetic Space, Southeast University 2 , Nanjing 210096,, State Key Laboratory of Millimeter Waves, Southeast University 1 , Nanjing 210096, |
| authorships[1].author.id | https://openalex.org/A5086320668 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4662-8667 |
| authorships[1].author.display_name | Qian Ma |
| authorships[1].countries | BD |
| authorships[1].affiliations[0].raw_affiliation_string | Institute of Electromagnetic Space, Southeast University 2 , Nanjing 210096, |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I4210090971 |
| authorships[1].affiliations[1].raw_affiliation_string | State Key Laboratory of Millimeter Waves, Southeast University 1 , Nanjing 210096, |
| authorships[1].institutions[0].id | https://openalex.org/I4210090971 |
| authorships[1].institutions[0].ror | https://ror.org/00cf0ab87 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210090971 |
| authorships[1].institutions[0].country_code | BD |
| authorships[1].institutions[0].display_name | Southeast University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Qian Ma |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Institute of Electromagnetic Space, Southeast University 2 , Nanjing 210096,, State Key Laboratory of Millimeter Waves, Southeast University 1 , Nanjing 210096, |
| authorships[2].author.id | https://openalex.org/A5023756152 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-5459-1008 |
| authorships[2].author.display_name | Ze Gu |
| authorships[2].countries | BD |
| authorships[2].affiliations[0].raw_affiliation_string | Institute of Electromagnetic Space, Southeast University 2 , Nanjing 210096, |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I4210090971 |
| authorships[2].affiliations[1].raw_affiliation_string | State Key Laboratory of Millimeter Waves, Southeast University 1 , Nanjing 210096, |
| authorships[2].institutions[0].id | https://openalex.org/I4210090971 |
| authorships[2].institutions[0].ror | https://ror.org/00cf0ab87 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210090971 |
| authorships[2].institutions[0].country_code | BD |
| authorships[2].institutions[0].display_name | Southeast University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ze Gu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Institute of Electromagnetic Space, Southeast University 2 , Nanjing 210096,, State Key Laboratory of Millimeter Waves, Southeast University 1 , Nanjing 210096, |
| authorships[3].author.id | https://openalex.org/A5078185186 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-0298-6195 |
| authorships[3].author.display_name | Yuming Ning |
| authorships[3].countries | BD |
| authorships[3].affiliations[0].raw_affiliation_string | Institute of Electromagnetic Space, Southeast University 2 , Nanjing 210096, |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I4210090971 |
| authorships[3].affiliations[1].raw_affiliation_string | State Key Laboratory of Millimeter Waves, Southeast University 1 , Nanjing 210096, |
| authorships[3].institutions[0].id | https://openalex.org/I4210090971 |
| authorships[3].institutions[0].ror | https://ror.org/00cf0ab87 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210090971 |
| authorships[3].institutions[0].country_code | BD |
| authorships[3].institutions[0].display_name | Southeast University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yu Ming Ning |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Institute of Electromagnetic Space, Southeast University 2 , Nanjing 210096,, State Key Laboratory of Millimeter Waves, Southeast University 1 , Nanjing 210096, |
| authorships[4].author.id | https://openalex.org/A5103010735 |
| authorships[4].author.orcid | https://orcid.org/0009-0009-3097-6657 |
| authorships[4].author.display_name | Xinxin Gao |
| authorships[4].countries | BD |
| authorships[4].affiliations[0].raw_affiliation_string | Institute of Electromagnetic Space, Southeast University 2 , Nanjing 210096, |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I4210090971 |
| authorships[4].affiliations[1].raw_affiliation_string | State Key Laboratory of Millimeter Waves, Southeast University 1 , Nanjing 210096, |
| authorships[4].institutions[0].id | https://openalex.org/I4210090971 |
| authorships[4].institutions[0].ror | https://ror.org/00cf0ab87 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210090971 |
| authorships[4].institutions[0].country_code | BD |
| authorships[4].institutions[0].display_name | Southeast University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Xinxin Gao |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Institute of Electromagnetic Space, Southeast University 2 , Nanjing 210096,, State Key Laboratory of Millimeter Waves, Southeast University 1 , Nanjing 210096, |
| authorships[5].author.id | https://openalex.org/A5009237669 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-5862-1497 |
| authorships[5].author.display_name | Tie Jun Cui |
| authorships[5].countries | BD, CN |
| authorships[5].affiliations[0].raw_affiliation_string | Institute of Electromagnetic Space, Southeast University 2 , Nanjing 210096, |
| authorships[5].affiliations[1].institution_ids | https://openalex.org/I4210090971 |
| authorships[5].affiliations[1].raw_affiliation_string | State Key Laboratory of Millimeter Waves, Southeast University 1 , Nanjing 210096, |
| authorships[5].affiliations[2].institution_ids | https://openalex.org/I4210125878 |
| authorships[5].affiliations[2].raw_affiliation_string | Suzhou Laboratory 3 , Suzhou 215004, |
| authorships[5].institutions[0].id | https://openalex.org/I4210090971 |
| authorships[5].institutions[0].ror | https://ror.org/00cf0ab87 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210090971 |
| authorships[5].institutions[0].country_code | BD |
| authorships[5].institutions[0].display_name | Southeast University |
| authorships[5].institutions[1].id | https://openalex.org/I4210125878 |
| authorships[5].institutions[1].ror | https://ror.org/03ebk0c60 |
| authorships[5].institutions[1].type | facility |
| authorships[5].institutions[1].lineage | https://openalex.org/I4210125878 |
| authorships[5].institutions[1].country_code | CN |
| authorships[5].institutions[1].display_name | Suzhou Research Institute |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Tie Jun Cui |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Institute of Electromagnetic Space, Southeast University 2 , Nanjing 210096,, State Key Laboratory of Millimeter Waves, Southeast University 1 , Nanjing 210096,, Suzhou Laboratory 3 , Suzhou 215004, |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1063/5.0279686 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Optimized dimension-reduction algorithm on input layer for diffractive neural networks |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12611 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Neural Networks and Reservoir Computing |
| related_works | https://openalex.org/W3176621072, https://openalex.org/W2995475466, https://openalex.org/W2356785732, https://openalex.org/W4210430843, https://openalex.org/W4239033281, https://openalex.org/W4380789568, https://openalex.org/W3105745662, https://openalex.org/W4379523021, https://openalex.org/W2146824712, https://openalex.org/W4323241237 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1063/5.0279686 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210226744 |
| best_oa_location.source.issn | 2378-0967 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2378-0967 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | APL Photonics |
| best_oa_location.source.host_organization | https://openalex.org/P4310320061 |
| best_oa_location.source.host_organization_name | AIP Publishing |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320061, https://openalex.org/P4310320257 |
| best_oa_location.source.host_organization_lineage_names | AIP Publishing, American Institute of Physics |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | APL Photonics |
| best_oa_location.landing_page_url | https://doi.org/10.1063/5.0279686 |
| primary_location.id | doi:10.1063/5.0279686 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210226744 |
| primary_location.source.issn | 2378-0967 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2378-0967 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | APL Photonics |
| primary_location.source.host_organization | https://openalex.org/P4310320061 |
| primary_location.source.host_organization_name | AIP Publishing |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320061, https://openalex.org/P4310320257 |
| primary_location.source.host_organization_lineage_names | AIP Publishing, American Institute of Physics |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | APL Photonics |
| primary_location.landing_page_url | https://doi.org/10.1063/5.0279686 |
| publication_date | 2025-07-01 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4406758414, https://openalex.org/W4379259169, https://openalex.org/W4367595583, https://openalex.org/W4392447866, https://openalex.org/W3155072588, https://openalex.org/W3009112473, https://openalex.org/W2805362231, https://openalex.org/W2752849906, https://openalex.org/W2595507424, https://openalex.org/W2254450385, https://openalex.org/W4387933007, https://openalex.org/W4212835306, https://openalex.org/W4281845262, https://openalex.org/W3081028044, https://openalex.org/W3138209928, https://openalex.org/W3015081725, https://openalex.org/W2798701005, https://openalex.org/W4225395649, https://openalex.org/W3030629809, https://openalex.org/W2909695780, https://openalex.org/W2151954810, https://openalex.org/W2469690627, https://openalex.org/W2155684415, https://openalex.org/W2100401723, https://openalex.org/W2061577342, https://openalex.org/W4406656624, https://openalex.org/W4403953237, https://openalex.org/W4388180075, https://openalex.org/W4387304422, https://openalex.org/W3015289839, https://openalex.org/W4280556547, https://openalex.org/W4400810358, https://openalex.org/W4366481776, https://openalex.org/W4401357788, https://openalex.org/W3195285466, https://openalex.org/W4399562719, https://openalex.org/W2045297017, https://openalex.org/W2914733350, https://openalex.org/W1977272108, https://openalex.org/W2154053567, https://openalex.org/W2169281690, https://openalex.org/W3156357868 |
| referenced_works_count | 42 |
| abstract_inverted_index.a | 6 |
| abstract_inverted_index.5% | 83 |
| abstract_inverted_index.In | 110 |
| abstract_inverted_index.an | 44, 50, 158 |
| abstract_inverted_index.in | 38, 105, 129, 140, 154, 171 |
| abstract_inverted_index.is | 102 |
| abstract_inverted_index.it | 137 |
| abstract_inverted_index.of | 31, 82, 116, 127, 164 |
| abstract_inverted_index.on | 49, 86 |
| abstract_inverted_index.to | 9, 16, 54, 66, 95, 138, 161 |
| abstract_inverted_index.we | 42 |
| abstract_inverted_index.Our | 145 |
| abstract_inverted_index.and | 21, 84, 89, 135, 166, 176 |
| abstract_inverted_index.due | 15 |
| abstract_inverted_index.has | 4, 149 |
| abstract_inverted_index.its | 17 |
| abstract_inverted_index.our | 77, 121 |
| abstract_inverted_index.the | 57, 62, 87, 96, 106, 114, 124, 130, 141, 152, 162 |
| abstract_inverted_index.4.8% | 128 |
| abstract_inverted_index.6.7% | 139 |
| abstract_inverted_index.7.3% | 85 |
| abstract_inverted_index.DNNs | 27, 65, 165 |
| abstract_inverted_index.fine | 29 |
| abstract_inverted_index.grid | 98 |
| abstract_inverted_index.into | 61 |
| abstract_inverted_index.lack | 28 |
| abstract_inverted_index.that | 76, 101 |
| abstract_inverted_index.used | 104 |
| abstract_inverted_index.when | 112 |
| abstract_inverted_index.with | 69 |
| abstract_inverted_index.(DNN) | 3 |
| abstract_inverted_index.DNNs. | 109 |
| abstract_inverted_index.Here, | 41 |
| abstract_inverted_index.MNIST | 88, 133 |
| abstract_inverted_index.based | 48 |
| abstract_inverted_index.holds | 123 |
| abstract_inverted_index.image | 119 |
| abstract_inverted_index.input | 32, 118 |
| abstract_inverted_index.issue | 115 |
| abstract_inverted_index.novel | 7 |
| abstract_inverted_index.score | 53 |
| abstract_inverted_index.speed | 20 |
| abstract_inverted_index.tasks | 14 |
| abstract_inverted_index.their | 36, 168 |
| abstract_inverted_index.which | 34 |
| abstract_inverted_index.Fisher | 52 |
| abstract_inverted_index.design | 30 |
| abstract_inverted_index.filter | 56 |
| abstract_inverted_index.inputs | 68 |
| abstract_inverted_index.limits | 35 |
| abstract_inverted_index.method | 100, 122 |
| abstract_inverted_index.neural | 1 |
| abstract_inverted_index.obtain | 67 |
| abstract_inverted_index.address | 10 |
| abstract_inverted_index.complex | 11, 117 |
| abstract_inverted_index.dataset | 134 |
| abstract_inverted_index.driving | 178 |
| abstract_inverted_index.expands | 136 |
| abstract_inverted_index.fields, | 156 |
| abstract_inverted_index.layers, | 33 |
| abstract_inverted_index.network | 2 |
| abstract_inverted_index.propose | 43 |
| abstract_inverted_index.results | 74 |
| abstract_inverted_index.uniform | 97 |
| abstract_inverted_index.However, | 25 |
| abstract_inverted_index.accuracy | 80, 125 |
| abstract_inverted_index.achieves | 79 |
| abstract_inverted_index.approach | 78 |
| abstract_inverted_index.commonly | 103 |
| abstract_inverted_index.compared | 94 |
| abstract_inverted_index.devices, | 173 |
| abstract_inverted_index.directly | 55 |
| abstract_inverted_index.enabling | 64 |
| abstract_inverted_index.existing | 107 |
| abstract_inverted_index.improved | 51 |
| abstract_inverted_index.injected | 60 |
| abstract_inverted_index.network, | 63 |
| abstract_inverted_index.parallel | 22 |
| abstract_inverted_index.provided | 5 |
| abstract_inverted_index.sampling | 99 |
| abstract_inverted_index.solution | 8, 160 |
| abstract_inverted_index.stronger | 70 |
| abstract_inverted_index.systems. | 179 |
| abstract_inverted_index.utilized | 151 |
| abstract_inverted_index.wearable | 172 |
| abstract_inverted_index.Numerical | 73 |
| abstract_inverted_index.addition, | 111 |
| abstract_inverted_index.advantage | 126 |
| abstract_inverted_index.algorithm | 47, 148 |
| abstract_inverted_index.computing | 23 |
| abstract_inverted_index.datasets, | 92 |
| abstract_inverted_index.distorted | 132 |
| abstract_inverted_index.efficient | 159 |
| abstract_inverted_index.optimized | 45, 146 |
| abstract_inverted_index.promoting | 167 |
| abstract_inverted_index.prospects | 170 |
| abstract_inverted_index.providing | 157 |
| abstract_inverted_index.resolving | 71 |
| abstract_inverted_index.scenario. | 144 |
| abstract_inverted_index.ultrahigh | 18 |
| abstract_inverted_index.addressing | 113 |
| abstract_inverted_index.artificial | 12 |
| abstract_inverted_index.autonomous | 177 |
| abstract_inverted_index.distortion | 143 |
| abstract_inverted_index.industrial | 174 |
| abstract_inverted_index.pincushion | 131 |
| abstract_inverted_index.processing | 19 |
| abstract_inverted_index.tangential | 142 |
| abstract_inverted_index.Diffractive | 0 |
| abstract_inverted_index.application | 169 |
| abstract_inverted_index.capability. | 24 |
| abstract_inverted_index.demonstrate | 75 |
| abstract_inverted_index.diffractive | 58, 155 |
| abstract_inverted_index.distortion, | 120 |
| abstract_inverted_index.effectively | 150 |
| abstract_inverted_index.information | 59, 153 |
| abstract_inverted_index.inspection, | 175 |
| abstract_inverted_index.performance | 37 |
| abstract_inverted_index.traditional | 26 |
| abstract_inverted_index.improvements | 81 |
| abstract_inverted_index.intelligence | 13 |
| abstract_inverted_index.miniaturized | 39 |
| abstract_inverted_index.Fashion-MNIST | 90 |
| abstract_inverted_index.applications. | 40 |
| abstract_inverted_index.capabilities. | 72 |
| abstract_inverted_index.respectively, | 93 |
| abstract_inverted_index.classification | 91 |
| abstract_inverted_index.miniaturization | 163 |
| abstract_inverted_index.dimension-reduction | 46, 108, 147 |
| cited_by_percentile_year | |
| countries_distinct_count | 2 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.12770465 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |