Optimized Non-Maximum Suppression for Multi-Source Local Discharge PRPD Pattern Identification Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.3233/faia241329
The multi-source partial discharge PRPD pattern can realize the pattern recognition of multi-source partial discharge types through the target detection algorithm training and identification of shape features. However, when the characteristics of different discharge pattern overlap, the small target is easily blocked by the large target, resulting in false detection and missed detection. Therefore, this paper proposes a multi-source partial discharge PRPD pattern identification algorithm with optimized non-maximum suppression. The Soft-NMS algorithm was introduced to solve the missed detection caused by overlapping targets; GIoU was used to replace the traditional IoU to calculate the similarity between targets and the loss function was optimized; the YOLOv7 network model was further built to identify the PRPD pattern of four typical discharges shape features. After cross-validation between simulation experiments and charged field data, the results prove that the average detection accuracy of the algorithm can reach 98.2% in simulation experiments and 88.4% in field experiments, effectively reducing the false detection rate and successfully identifying the characteristics of multi-source local discharge PRPD pattern when the targets overlap.
Related Topics
- Type
- book-chapter
- Language
- en
- Landing Page
- https://doi.org/10.3233/faia241329
- https://ebooks.iospress.nl/pdf/doi/10.3233/FAIA241329
- OA Status
- hybrid
- References
- 19
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4405377563
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4405377563Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3233/faia241329Digital Object Identifier
- Title
-
Optimized Non-Maximum Suppression for Multi-Source Local Discharge PRPD Pattern IdentificationWork title
- Type
-
book-chapterOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-12-13Full publication date if available
- Authors
-
Yizhi Fang, Yuling Lin, Tianshu Li, Zicong Qiu, Yu-Hua Huang, Yi XiaoList of authors in order
- Landing page
-
https://doi.org/10.3233/faia241329Publisher landing page
- PDF URL
-
https://ebooks.iospress.nl/pdf/doi/10.3233/FAIA241329Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://ebooks.iospress.nl/pdf/doi/10.3233/FAIA241329Direct OA link when available
- Concepts
-
Identification (biology), Materials science, Environmental science, Biology, BotanyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
19Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4405377563 |
|---|---|
| doi | https://doi.org/10.3233/faia241329 |
| ids.doi | https://doi.org/10.3233/faia241329 |
| ids.openalex | https://openalex.org/W4405377563 |
| fwci | 0.0 |
| type | book-chapter |
| title | Optimized Non-Maximum Suppression for Multi-Source Local Discharge PRPD Pattern Identification |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10511 |
| topics[0].field.id | https://openalex.org/fields/25 |
| topics[0].field.display_name | Materials Science |
| topics[0].score | 0.9833999872207642 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2505 |
| topics[0].subfield.display_name | Materials Chemistry |
| topics[0].display_name | High voltage insulation and dielectric phenomena |
| topics[1].id | https://openalex.org/T10781 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9793999791145325 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Plasma Diagnostics and Applications |
| topics[2].id | https://openalex.org/T12564 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9488999843597412 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1705 |
| topics[2].subfield.display_name | Computer Networks and Communications |
| topics[2].display_name | Sensor Technology and Measurement Systems |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C116834253 |
| concepts[0].level | 2 |
| concepts[0].score | 0.5958921909332275 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2039217 |
| concepts[0].display_name | Identification (biology) |
| concepts[1].id | https://openalex.org/C192562407 |
| concepts[1].level | 0 |
| concepts[1].score | 0.4471575617790222 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[1].display_name | Materials science |
| concepts[2].id | https://openalex.org/C39432304 |
| concepts[2].level | 0 |
| concepts[2].score | 0.32883793115615845 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[2].display_name | Environmental science |
| concepts[3].id | https://openalex.org/C86803240 |
| concepts[3].level | 0 |
| concepts[3].score | 0.09043100476264954 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[3].display_name | Biology |
| concepts[4].id | https://openalex.org/C59822182 |
| concepts[4].level | 1 |
| concepts[4].score | 0.0 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q441 |
| concepts[4].display_name | Botany |
| keywords[0].id | https://openalex.org/keywords/identification |
| keywords[0].score | 0.5958921909332275 |
| keywords[0].display_name | Identification (biology) |
| keywords[1].id | https://openalex.org/keywords/materials-science |
| keywords[1].score | 0.4471575617790222 |
| keywords[1].display_name | Materials science |
| keywords[2].id | https://openalex.org/keywords/environmental-science |
| keywords[2].score | 0.32883793115615845 |
| keywords[2].display_name | Environmental science |
| keywords[3].id | https://openalex.org/keywords/biology |
| keywords[3].score | 0.09043100476264954 |
| keywords[3].display_name | Biology |
| language | en |
| locations[0].id | doi:10.3233/faia241329 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210201731 |
| locations[0].source.issn | 0922-6389, 1879-8314 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0922-6389 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Frontiers in artificial intelligence and applications |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | cc-by-nc |
| locations[0].pdf_url | https://ebooks.iospress.nl/pdf/doi/10.3233/FAIA241329 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | book-chapter |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Frontiers in Artificial Intelligence and Applications |
| locations[0].landing_page_url | https://doi.org/10.3233/faia241329 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5113824489 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Yizhi Fang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I74872605 |
| authorships[0].affiliations[0].raw_affiliation_string | Zhuhai Power Supply Bureau, Guangdong Power Grid Corporation, Zhuhai, Guang-dong Province, China 519000 |
| authorships[0].institutions[0].id | https://openalex.org/I74872605 |
| authorships[0].institutions[0].ror | https://ror.org/03hkh9419 |
| authorships[0].institutions[0].type | company |
| authorships[0].institutions[0].lineage | https://openalex.org/I74872605 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | China Southern Power Grid (China) |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yizhi Fang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Zhuhai Power Supply Bureau, Guangdong Power Grid Corporation, Zhuhai, Guang-dong Province, China 519000 |
| authorships[1].author.id | https://openalex.org/A5100599533 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2911-9780 |
| authorships[1].author.display_name | Yuling Lin |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I74872605 |
| authorships[1].affiliations[0].raw_affiliation_string | Zhuhai Power Supply Bureau, Guangdong Power Grid Corporation, Zhuhai, Guangdong Province, China 519000 |
| authorships[1].institutions[0].id | https://openalex.org/I74872605 |
| authorships[1].institutions[0].ror | https://ror.org/03hkh9419 |
| authorships[1].institutions[0].type | company |
| authorships[1].institutions[0].lineage | https://openalex.org/I74872605 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | China Southern Power Grid (China) |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yuling Lin |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Zhuhai Power Supply Bureau, Guangdong Power Grid Corporation, Zhuhai, Guangdong Province, China 519000 |
| authorships[2].author.id | https://openalex.org/A5101717798 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-8870-6478 |
| authorships[2].author.display_name | Tianshu Li |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I74872605 |
| authorships[2].affiliations[0].raw_affiliation_string | Zhuhai Power Supply Bureau, Guangdong Power Grid Corporation, Zhuhai, Guang-dong Province, China 519000 |
| authorships[2].institutions[0].id | https://openalex.org/I74872605 |
| authorships[2].institutions[0].ror | https://ror.org/03hkh9419 |
| authorships[2].institutions[0].type | company |
| authorships[2].institutions[0].lineage | https://openalex.org/I74872605 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | China Southern Power Grid (China) |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Tianshu Li |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Zhuhai Power Supply Bureau, Guangdong Power Grid Corporation, Zhuhai, Guang-dong Province, China 519000 |
| authorships[3].author.id | https://openalex.org/A5111090777 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Zicong Qiu |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I74872605 |
| authorships[3].affiliations[0].raw_affiliation_string | Zhuhai Power Supply Bureau, Guangdong Power Grid Corporation, Zhuhai, Guang-dong Province, China 519000 |
| authorships[3].institutions[0].id | https://openalex.org/I74872605 |
| authorships[3].institutions[0].ror | https://ror.org/03hkh9419 |
| authorships[3].institutions[0].type | company |
| authorships[3].institutions[0].lineage | https://openalex.org/I74872605 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | China Southern Power Grid (China) |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Zicong Qiu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Zhuhai Power Supply Bureau, Guangdong Power Grid Corporation, Zhuhai, Guang-dong Province, China 519000 |
| authorships[4].author.id | https://openalex.org/A5100743113 |
| authorships[4].author.orcid | https://orcid.org/0009-0007-7958-6196 |
| authorships[4].author.display_name | Yu-Hua Huang |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I74872605 |
| authorships[4].affiliations[0].raw_affiliation_string | Zhuhai Power Supply Bureau, Guangdong Power Grid Corporation, Zhuhai, Guang-dong Province, China 519000 |
| authorships[4].institutions[0].id | https://openalex.org/I74872605 |
| authorships[4].institutions[0].ror | https://ror.org/03hkh9419 |
| authorships[4].institutions[0].type | company |
| authorships[4].institutions[0].lineage | https://openalex.org/I74872605 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | China Southern Power Grid (China) |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Yuhua Huang |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Zhuhai Power Supply Bureau, Guangdong Power Grid Corporation, Zhuhai, Guang-dong Province, China 519000 |
| authorships[5].author.id | https://openalex.org/A5066344986 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-5315-7771 |
| authorships[5].author.display_name | Yi Xiao |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].raw_affiliation_string | Zhuhai Yite High tech Co., Ltd, Guangdong Zhuhai 519000, China |
| authorships[5].affiliations[1].institution_ids | https://openalex.org/I74872605 |
| authorships[5].affiliations[1].raw_affiliation_string | Zhuhai Power Supply Bureau, Guangdong Power Grid Corporation, Zhuhai, Guang-dong Province, China 519000 |
| authorships[5].institutions[0].id | https://openalex.org/I74872605 |
| authorships[5].institutions[0].ror | https://ror.org/03hkh9419 |
| authorships[5].institutions[0].type | company |
| authorships[5].institutions[0].lineage | https://openalex.org/I74872605 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | China Southern Power Grid (China) |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Xiabo Yi |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Zhuhai Power Supply Bureau, Guangdong Power Grid Corporation, Zhuhai, Guang-dong Province, China 519000, Zhuhai Yite High tech Co., Ltd, Guangdong Zhuhai 519000, China |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ebooks.iospress.nl/pdf/doi/10.3233/FAIA241329 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Optimized Non-Maximum Suppression for Multi-Source Local Discharge PRPD Pattern Identification |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10511 |
| primary_topic.field.id | https://openalex.org/fields/25 |
| primary_topic.field.display_name | Materials Science |
| primary_topic.score | 0.9833999872207642 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2505 |
| primary_topic.subfield.display_name | Materials Chemistry |
| primary_topic.display_name | High voltage insulation and dielectric phenomena |
| related_works | https://openalex.org/W2899084033, https://openalex.org/W4404995717, https://openalex.org/W2016187641, https://openalex.org/W4404725684, https://openalex.org/W2805339068, https://openalex.org/W4246450666, https://openalex.org/W4388998267, https://openalex.org/W2898370298, https://openalex.org/W2137437058, https://openalex.org/W4404784341 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.3233/faia241329 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210201731 |
| best_oa_location.source.issn | 0922-6389, 1879-8314 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0922-6389 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Frontiers in artificial intelligence and applications |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | cc-by-nc |
| best_oa_location.pdf_url | https://ebooks.iospress.nl/pdf/doi/10.3233/FAIA241329 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | book-chapter |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Frontiers in Artificial Intelligence and Applications |
| best_oa_location.landing_page_url | https://doi.org/10.3233/faia241329 |
| primary_location.id | doi:10.3233/faia241329 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210201731 |
| primary_location.source.issn | 0922-6389, 1879-8314 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0922-6389 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Frontiers in artificial intelligence and applications |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | cc-by-nc |
| primary_location.pdf_url | https://ebooks.iospress.nl/pdf/doi/10.3233/FAIA241329 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | book-chapter |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Frontiers in Artificial Intelligence and Applications |
| primary_location.landing_page_url | https://doi.org/10.3233/faia241329 |
| publication_date | 2024-12-13 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2570343428, https://openalex.org/W3080367886, https://openalex.org/W4392792010, https://openalex.org/W3046930821, https://openalex.org/W3216921374, https://openalex.org/W3173755337, https://openalex.org/W2953928707, https://openalex.org/W4361799293, https://openalex.org/W2963037989, https://openalex.org/W2980729011, https://openalex.org/W2949491127, https://openalex.org/W3213362485, https://openalex.org/W4281290578, https://openalex.org/W3191668123, https://openalex.org/W4303699850, https://openalex.org/W4394724823, https://openalex.org/W3193771350, https://openalex.org/W4393308605, https://openalex.org/W4317033453 |
| referenced_works_count | 19 |
| abstract_inverted_index.a | 57 |
| abstract_inverted_index.by | 42, 80 |
| abstract_inverted_index.in | 47, 144, 149 |
| abstract_inverted_index.is | 39 |
| abstract_inverted_index.of | 11, 24, 31, 115, 138, 163 |
| abstract_inverted_index.to | 74, 86, 91, 110 |
| abstract_inverted_index.IoU | 90 |
| abstract_inverted_index.The | 0, 69 |
| abstract_inverted_index.and | 22, 50, 97, 126, 147, 158 |
| abstract_inverted_index.can | 6, 141 |
| abstract_inverted_index.the | 8, 17, 29, 36, 43, 76, 88, 93, 98, 103, 112, 130, 134, 139, 154, 161, 170 |
| abstract_inverted_index.was | 72, 84, 101, 107 |
| abstract_inverted_index.GIoU | 83 |
| abstract_inverted_index.PRPD | 4, 61, 113, 167 |
| abstract_inverted_index.four | 116 |
| abstract_inverted_index.loss | 99 |
| abstract_inverted_index.rate | 157 |
| abstract_inverted_index.that | 133 |
| abstract_inverted_index.this | 54 |
| abstract_inverted_index.used | 85 |
| abstract_inverted_index.when | 28, 169 |
| abstract_inverted_index.with | 65 |
| abstract_inverted_index.88.4% | 148 |
| abstract_inverted_index.98.2% | 143 |
| abstract_inverted_index.After | 121 |
| abstract_inverted_index.built | 109 |
| abstract_inverted_index.data, | 129 |
| abstract_inverted_index.false | 48, 155 |
| abstract_inverted_index.field | 128, 150 |
| abstract_inverted_index.large | 44 |
| abstract_inverted_index.local | 165 |
| abstract_inverted_index.model | 106 |
| abstract_inverted_index.paper | 55 |
| abstract_inverted_index.prove | 132 |
| abstract_inverted_index.reach | 142 |
| abstract_inverted_index.shape | 25, 119 |
| abstract_inverted_index.small | 37 |
| abstract_inverted_index.solve | 75 |
| abstract_inverted_index.types | 15 |
| abstract_inverted_index.YOLOv7 | 104 |
| abstract_inverted_index.caused | 79 |
| abstract_inverted_index.easily | 40 |
| abstract_inverted_index.missed | 51, 77 |
| abstract_inverted_index.target | 18, 38 |
| abstract_inverted_index.average | 135 |
| abstract_inverted_index.between | 95, 123 |
| abstract_inverted_index.blocked | 41 |
| abstract_inverted_index.charged | 127 |
| abstract_inverted_index.further | 108 |
| abstract_inverted_index.network | 105 |
| abstract_inverted_index.partial | 2, 13, 59 |
| abstract_inverted_index.pattern | 5, 9, 34, 62, 114, 168 |
| abstract_inverted_index.realize | 7 |
| abstract_inverted_index.replace | 87 |
| abstract_inverted_index.results | 131 |
| abstract_inverted_index.target, | 45 |
| abstract_inverted_index.targets | 96, 171 |
| abstract_inverted_index.through | 16 |
| abstract_inverted_index.typical | 117 |
| abstract_inverted_index.However, | 27 |
| abstract_inverted_index.Soft-NMS | 70 |
| abstract_inverted_index.accuracy | 137 |
| abstract_inverted_index.function | 100 |
| abstract_inverted_index.identify | 111 |
| abstract_inverted_index.overlap, | 35 |
| abstract_inverted_index.overlap. | 172 |
| abstract_inverted_index.proposes | 56 |
| abstract_inverted_index.reducing | 153 |
| abstract_inverted_index.targets; | 82 |
| abstract_inverted_index.training | 21 |
| abstract_inverted_index.algorithm | 20, 64, 71, 140 |
| abstract_inverted_index.calculate | 92 |
| abstract_inverted_index.detection | 19, 49, 78, 136, 156 |
| abstract_inverted_index.different | 32 |
| abstract_inverted_index.discharge | 3, 14, 33, 60, 166 |
| abstract_inverted_index.features. | 26, 120 |
| abstract_inverted_index.optimized | 66 |
| abstract_inverted_index.resulting | 46 |
| abstract_inverted_index.Therefore, | 53 |
| abstract_inverted_index.detection. | 52 |
| abstract_inverted_index.discharges | 118 |
| abstract_inverted_index.introduced | 73 |
| abstract_inverted_index.optimized; | 102 |
| abstract_inverted_index.similarity | 94 |
| abstract_inverted_index.simulation | 124, 145 |
| abstract_inverted_index.effectively | 152 |
| abstract_inverted_index.experiments | 125, 146 |
| abstract_inverted_index.identifying | 160 |
| abstract_inverted_index.non-maximum | 67 |
| abstract_inverted_index.overlapping | 81 |
| abstract_inverted_index.recognition | 10 |
| abstract_inverted_index.traditional | 89 |
| abstract_inverted_index.experiments, | 151 |
| abstract_inverted_index.multi-source | 1, 12, 58, 164 |
| abstract_inverted_index.successfully | 159 |
| abstract_inverted_index.suppression. | 68 |
| abstract_inverted_index.identification | 23, 63 |
| abstract_inverted_index.characteristics | 30, 162 |
| abstract_inverted_index.cross-validation | 122 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.59571876 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |