Optimized Tradeoffs for Private Prediction with Majority Ensembling Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2411.17965
We study a classical problem in private prediction, the problem of computing an $(mε, δ)$-differentially private majority of $K$ $(ε, Δ)$-differentially private algorithms for $1 \leq m \leq K$ and $1 > δ\geq Δ\geq 0$. Standard methods such as subsampling or randomized response are widely used, but do they provide optimal privacy-utility tradeoffs? To answer this, we introduce the Data-dependent Randomized Response Majority (DaRRM) algorithm. It is parameterized by a data-dependent noise function $γ$, and enables efficient utility optimization over the class of all private algorithms, encompassing those standard methods. We show that maximizing the utility of an $(mε, δ)$-private majority algorithm can be computed tractably through an optimization problem for any $m \leq K$ by a novel structural result that reduces the infinitely many privacy constraints into a polynomial set. In some settings, we show that DaRRM provably enjoys a privacy gain of a factor of 2 over common baselines, with fixed utility. Lastly, we demonstrate the strong empirical effectiveness of our first-of-its-kind privacy-constrained utility optimization for ensembling labels for private prediction from private teachers in image classification. Notably, our DaRRM framework with an optimized $γ$ exhibits substantial utility gains when compared against several baselines.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2411.17965
- https://arxiv.org/pdf/2411.17965
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4404990226
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4404990226Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2411.17965Digital Object Identifier
- Title
-
Optimized Tradeoffs for Private Prediction with Majority EnsemblingWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-11-27Full publication date if available
- Authors
-
Shuli Jiang, Qiuyi, Ying Zhang, Gauri JoshiList of authors in order
- Landing page
-
https://arxiv.org/abs/2411.17965Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2411.17965Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2411.17965Direct OA link when available
- Concepts
-
Computer scienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4404990226 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2411.17965 |
| ids.doi | https://doi.org/10.48550/arxiv.2411.17965 |
| ids.openalex | https://openalex.org/W4404990226 |
| fwci | |
| type | preprint |
| title | Optimized Tradeoffs for Private Prediction with Majority Ensembling |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10764 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9879000186920166 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Privacy-Preserving Technologies in Data |
| topics[1].id | https://openalex.org/T11182 |
| topics[1].field.id | https://openalex.org/fields/18 |
| topics[1].field.display_name | Decision Sciences |
| topics[1].score | 0.9585000276565552 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1803 |
| topics[1].subfield.display_name | Management Science and Operations Research |
| topics[1].display_name | Auction Theory and Applications |
| topics[2].id | https://openalex.org/T10237 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9383000135421753 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Cryptography and Data Security |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.4060790538787842 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.4060790538787842 |
| keywords[0].display_name | Computer science |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2411.17965 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2411.17965 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2411.17965 |
| locations[1].id | doi:10.48550/arxiv.2411.17965 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2411.17965 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5013215630 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Shuli Jiang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jiang, Shuli |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5025538636 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Qiuyi |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Qiuyi |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5108046728 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-2451-5354 |
| authorships[2].author.display_name | Ying Zhang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zhang |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5067441201 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6372-9697 |
| authorships[3].author.display_name | Gauri Joshi |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Joshi, Gauri |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2411.17965 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Optimized Tradeoffs for Private Prediction with Majority Ensembling |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10764 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9879000186920166 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Privacy-Preserving Technologies in Data |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W4396696052 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2411.17965 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2411.17965 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2411.17965 |
| primary_location.id | pmh:oai:arXiv.org:2411.17965 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2411.17965 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2411.17965 |
| publication_date | 2024-11-27 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.2 | 147 |
| abstract_inverted_index.a | 2, 69, 116, 128, 140, 144 |
| abstract_inverted_index.m | 26 |
| abstract_inverted_index.$1 | 24, 30 |
| abstract_inverted_index.$m | 112 |
| abstract_inverted_index.In | 131 |
| abstract_inverted_index.It | 65 |
| abstract_inverted_index.K$ | 28, 114 |
| abstract_inverted_index.To | 53 |
| abstract_inverted_index.We | 0, 90 |
| abstract_inverted_index.an | 12, 97, 107, 184 |
| abstract_inverted_index.as | 38 |
| abstract_inverted_index.be | 103 |
| abstract_inverted_index.by | 68, 115 |
| abstract_inverted_index.do | 47 |
| abstract_inverted_index.in | 5, 176 |
| abstract_inverted_index.is | 66 |
| abstract_inverted_index.of | 10, 17, 82, 96, 143, 146, 161 |
| abstract_inverted_index.or | 40 |
| abstract_inverted_index.we | 56, 134, 155 |
| abstract_inverted_index.$K$ | 18 |
| abstract_inverted_index.0$. | 34 |
| abstract_inverted_index.all | 83 |
| abstract_inverted_index.and | 29, 74 |
| abstract_inverted_index.any | 111 |
| abstract_inverted_index.are | 43 |
| abstract_inverted_index.but | 46 |
| abstract_inverted_index.can | 102 |
| abstract_inverted_index.for | 23, 110, 167, 170 |
| abstract_inverted_index.our | 162, 180 |
| abstract_inverted_index.the | 8, 58, 80, 94, 122, 157 |
| abstract_inverted_index.$γ$ | 186 |
| abstract_inverted_index.> | 31 |
| abstract_inverted_index.\leq | 25, 27, 113 |
| abstract_inverted_index.from | 173 |
| abstract_inverted_index.gain | 142 |
| abstract_inverted_index.into | 127 |
| abstract_inverted_index.many | 124 |
| abstract_inverted_index.over | 79, 148 |
| abstract_inverted_index.set. | 130 |
| abstract_inverted_index.show | 91, 135 |
| abstract_inverted_index.some | 132 |
| abstract_inverted_index.such | 37 |
| abstract_inverted_index.that | 92, 120, 136 |
| abstract_inverted_index.they | 48 |
| abstract_inverted_index.when | 191 |
| abstract_inverted_index.with | 151, 183 |
| abstract_inverted_index.$(ε, | 19 |
| abstract_inverted_index.$γ$, | 73 |
| abstract_inverted_index.DaRRM | 137, 181 |
| abstract_inverted_index.class | 81 |
| abstract_inverted_index.fixed | 152 |
| abstract_inverted_index.gains | 190 |
| abstract_inverted_index.image | 177 |
| abstract_inverted_index.noise | 71 |
| abstract_inverted_index.novel | 117 |
| abstract_inverted_index.study | 1 |
| abstract_inverted_index.this, | 55 |
| abstract_inverted_index.those | 87 |
| abstract_inverted_index.used, | 45 |
| abstract_inverted_index.$(mε, | 13, 98 |
| abstract_inverted_index.answer | 54 |
| abstract_inverted_index.common | 149 |
| abstract_inverted_index.enjoys | 139 |
| abstract_inverted_index.factor | 145 |
| abstract_inverted_index.labels | 169 |
| abstract_inverted_index.result | 119 |
| abstract_inverted_index.strong | 158 |
| abstract_inverted_index.widely | 44 |
| abstract_inverted_index.Δ\geq | 33 |
| abstract_inverted_index.δ\geq | 32 |
| abstract_inverted_index.(DaRRM) | 63 |
| abstract_inverted_index.Lastly, | 154 |
| abstract_inverted_index.against | 193 |
| abstract_inverted_index.enables | 75 |
| abstract_inverted_index.methods | 36 |
| abstract_inverted_index.optimal | 50 |
| abstract_inverted_index.privacy | 125, 141 |
| abstract_inverted_index.private | 6, 15, 21, 84, 171, 174 |
| abstract_inverted_index.problem | 4, 9, 109 |
| abstract_inverted_index.provide | 49 |
| abstract_inverted_index.reduces | 121 |
| abstract_inverted_index.several | 194 |
| abstract_inverted_index.through | 106 |
| abstract_inverted_index.utility | 77, 95, 165, 189 |
| abstract_inverted_index.Majority | 62 |
| abstract_inverted_index.Notably, | 179 |
| abstract_inverted_index.Response | 61 |
| abstract_inverted_index.Standard | 35 |
| abstract_inverted_index.compared | 192 |
| abstract_inverted_index.computed | 104 |
| abstract_inverted_index.exhibits | 187 |
| abstract_inverted_index.function | 72 |
| abstract_inverted_index.majority | 16, 100 |
| abstract_inverted_index.methods. | 89 |
| abstract_inverted_index.provably | 138 |
| abstract_inverted_index.response | 42 |
| abstract_inverted_index.standard | 88 |
| abstract_inverted_index.teachers | 175 |
| abstract_inverted_index.utility. | 153 |
| abstract_inverted_index.algorithm | 101 |
| abstract_inverted_index.classical | 3 |
| abstract_inverted_index.computing | 11 |
| abstract_inverted_index.efficient | 76 |
| abstract_inverted_index.empirical | 159 |
| abstract_inverted_index.framework | 182 |
| abstract_inverted_index.introduce | 57 |
| abstract_inverted_index.optimized | 185 |
| abstract_inverted_index.settings, | 133 |
| abstract_inverted_index.tractably | 105 |
| abstract_inverted_index.Randomized | 60 |
| abstract_inverted_index.algorithm. | 64 |
| abstract_inverted_index.algorithms | 22 |
| abstract_inverted_index.baselines, | 150 |
| abstract_inverted_index.baselines. | 195 |
| abstract_inverted_index.ensembling | 168 |
| abstract_inverted_index.infinitely | 123 |
| abstract_inverted_index.maximizing | 93 |
| abstract_inverted_index.polynomial | 129 |
| abstract_inverted_index.prediction | 172 |
| abstract_inverted_index.randomized | 41 |
| abstract_inverted_index.structural | 118 |
| abstract_inverted_index.tradeoffs? | 52 |
| abstract_inverted_index.algorithms, | 85 |
| abstract_inverted_index.constraints | 126 |
| abstract_inverted_index.demonstrate | 156 |
| abstract_inverted_index.prediction, | 7 |
| abstract_inverted_index.subsampling | 39 |
| abstract_inverted_index.substantial | 188 |
| abstract_inverted_index.encompassing | 86 |
| abstract_inverted_index.optimization | 78, 108, 166 |
| abstract_inverted_index.δ)$-private | 99 |
| abstract_inverted_index.effectiveness | 160 |
| abstract_inverted_index.parameterized | 67 |
| abstract_inverted_index.Data-dependent | 59 |
| abstract_inverted_index.data-dependent | 70 |
| abstract_inverted_index.classification. | 178 |
| abstract_inverted_index.privacy-utility | 51 |
| abstract_inverted_index.first-of-its-kind | 163 |
| abstract_inverted_index.privacy-constrained | 164 |
| abstract_inverted_index.Δ)$-differentially | 20 |
| abstract_inverted_index.δ)$-differentially | 14 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |