Optimizing disorder with machine learning to harness synchronization Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2504.09808
Disorder is often considered detrimental to coherence. However, under specific conditions, it can enhance synchronization. We develop a machine-learning framework to design optimal disorder configurations that maximize phase synchronization. In particular, utilizing the system of coupled nonlinear pendulums with disorder and noise, we train a feedforward neural network (FNN), with the disorder parameters as input, to predict the Shannon entropy index that quantifies the phase synchronization strength. The trained FNN model is then deployed to search for the optimal disorder configurations in the high-dimensional space of the disorder parameters, providing a computationally efficient replacement of the stochastic differential equation solvers. Our results demonstrate that the FNN is capable of accurately predicting synchronization and facilitates an efficient inverse design solution to optimizing and enhancing synchronization.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2504.09808
- https://arxiv.org/pdf/2504.09808
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4415158257
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415158257Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2504.09808Digital Object Identifier
- Title
-
Optimizing disorder with machine learning to harness synchronizationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-04-14Full publication date if available
- Authors
-
Jianzhe Huang, Zheng-Meng Zhai, Vassilios Kovanis, Ying‐Cheng LaiList of authors in order
- Landing page
-
https://arxiv.org/abs/2504.09808Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2504.09808Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2504.09808Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4415158257 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2504.09808 |
| ids.doi | https://doi.org/10.48550/arxiv.2504.09808 |
| ids.openalex | https://openalex.org/W4415158257 |
| fwci | |
| type | preprint |
| title | Optimizing disorder with machine learning to harness synchronization |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10581 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 0.817300021648407 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2805 |
| topics[0].subfield.display_name | Cognitive Neuroscience |
| topics[0].display_name | Neural dynamics and brain function |
| topics[1].id | https://openalex.org/T12946 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.7508000135421753 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1312 |
| topics[1].subfield.display_name | Molecular Biology |
| topics[1].display_name | Fractal and DNA sequence analysis |
| topics[2].id | https://openalex.org/T10320 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.7427999973297119 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Neural Networks and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2504.09808 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | https://arxiv.org/pdf/2504.09808 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2504.09808 |
| locations[1].id | doi:10.48550/arxiv.2504.09808 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2504.09808 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5020274098 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5945-6235 |
| authorships[0].author.display_name | Jianzhe Huang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Huang, Jun-Yin |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5089789809 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3702-0454 |
| authorships[1].author.display_name | Zheng-Meng Zhai |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zhai, Zheng-Meng |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5083629166 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0697-8379 |
| authorships[2].author.display_name | Vassilios Kovanis |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Kovanis, Vassilios |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5102995786 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0723-733X |
| authorships[3].author.display_name | Ying‐Cheng Lai |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Lai, Ying-Cheng |
| authorships[3].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2504.09808 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-14T00:00:00 |
| display_name | Optimizing disorder with machine learning to harness synchronization |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10581 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 0.817300021648407 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2805 |
| primary_topic.subfield.display_name | Cognitive Neuroscience |
| primary_topic.display_name | Neural dynamics and brain function |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2504.09808 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2504.09808 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2504.09808 |
| primary_location.id | pmh:oai:arXiv.org:2504.09808 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | https://arxiv.org/pdf/2504.09808 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2504.09808 |
| publication_date | 2025-04-14 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 17, 44, 90 |
| abstract_inverted_index.In | 29 |
| abstract_inverted_index.We | 15 |
| abstract_inverted_index.an | 114 |
| abstract_inverted_index.as | 53 |
| abstract_inverted_index.in | 81 |
| abstract_inverted_index.is | 1, 71, 106 |
| abstract_inverted_index.it | 11 |
| abstract_inverted_index.of | 34, 85, 94, 108 |
| abstract_inverted_index.to | 5, 20, 55, 74, 119 |
| abstract_inverted_index.we | 42 |
| abstract_inverted_index.FNN | 69, 105 |
| abstract_inverted_index.Our | 100 |
| abstract_inverted_index.The | 67 |
| abstract_inverted_index.and | 40, 112, 121 |
| abstract_inverted_index.can | 12 |
| abstract_inverted_index.for | 76 |
| abstract_inverted_index.the | 32, 50, 57, 63, 77, 82, 86, 95, 104 |
| abstract_inverted_index.that | 25, 61, 103 |
| abstract_inverted_index.then | 72 |
| abstract_inverted_index.with | 38, 49 |
| abstract_inverted_index.index | 60 |
| abstract_inverted_index.model | 70 |
| abstract_inverted_index.often | 2 |
| abstract_inverted_index.phase | 27, 64 |
| abstract_inverted_index.space | 84 |
| abstract_inverted_index.train | 43 |
| abstract_inverted_index.under | 8 |
| abstract_inverted_index.(FNN), | 48 |
| abstract_inverted_index.design | 21, 117 |
| abstract_inverted_index.input, | 54 |
| abstract_inverted_index.neural | 46 |
| abstract_inverted_index.noise, | 41 |
| abstract_inverted_index.search | 75 |
| abstract_inverted_index.system | 33 |
| abstract_inverted_index.Shannon | 58 |
| abstract_inverted_index.capable | 107 |
| abstract_inverted_index.coupled | 35 |
| abstract_inverted_index.develop | 16 |
| abstract_inverted_index.enhance | 13 |
| abstract_inverted_index.entropy | 59 |
| abstract_inverted_index.inverse | 116 |
| abstract_inverted_index.network | 47 |
| abstract_inverted_index.optimal | 22, 78 |
| abstract_inverted_index.predict | 56 |
| abstract_inverted_index.results | 101 |
| abstract_inverted_index.trained | 68 |
| abstract_inverted_index.Disorder | 0 |
| abstract_inverted_index.However, | 7 |
| abstract_inverted_index.deployed | 73 |
| abstract_inverted_index.disorder | 23, 39, 51, 79, 87 |
| abstract_inverted_index.equation | 98 |
| abstract_inverted_index.maximize | 26 |
| abstract_inverted_index.solution | 118 |
| abstract_inverted_index.solvers. | 99 |
| abstract_inverted_index.specific | 9 |
| abstract_inverted_index.efficient | 92, 115 |
| abstract_inverted_index.enhancing | 122 |
| abstract_inverted_index.framework | 19 |
| abstract_inverted_index.nonlinear | 36 |
| abstract_inverted_index.pendulums | 37 |
| abstract_inverted_index.providing | 89 |
| abstract_inverted_index.strength. | 66 |
| abstract_inverted_index.utilizing | 31 |
| abstract_inverted_index.accurately | 109 |
| abstract_inverted_index.coherence. | 6 |
| abstract_inverted_index.considered | 3 |
| abstract_inverted_index.optimizing | 120 |
| abstract_inverted_index.parameters | 52 |
| abstract_inverted_index.predicting | 110 |
| abstract_inverted_index.quantifies | 62 |
| abstract_inverted_index.stochastic | 96 |
| abstract_inverted_index.conditions, | 10 |
| abstract_inverted_index.demonstrate | 102 |
| abstract_inverted_index.detrimental | 4 |
| abstract_inverted_index.facilitates | 113 |
| abstract_inverted_index.feedforward | 45 |
| abstract_inverted_index.parameters, | 88 |
| abstract_inverted_index.particular, | 30 |
| abstract_inverted_index.replacement | 93 |
| abstract_inverted_index.differential | 97 |
| abstract_inverted_index.configurations | 24, 80 |
| abstract_inverted_index.computationally | 91 |
| abstract_inverted_index.synchronization | 65, 111 |
| abstract_inverted_index.high-dimensional | 83 |
| abstract_inverted_index.machine-learning | 18 |
| abstract_inverted_index.synchronization. | 14, 28, 123 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |