Optimizing Fingerprint-Spectrum-Based Synchronization in Integrated Sensing and Communications Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2410.10134
Asynchronous radio transceivers often lead to significant range and velocity ambiguity, posing challenges for precise positioning and velocity estimation in passive-sensing perceptive mobile networks (PMNs). To address this issue, carrier frequency offset (CFO) and time offset (TO) synchronization algorithms have been studied in the literature. However, their performance can be significantly affected by the specific choice of the utilized window functions. Hence, we set out to find superior window functions capable of improving the performance of CFO and TO estimation algorithms. We first derive a near-optimal window, and the theoretical synchronization mean square error (MSE) when utilizing this window. However, since this window is not practically achievable, we then develop a practical window selection criterion and test a special window generated by the super-resolution algorithm. Numerical simulation has verified our analysis.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2410.10134
- https://arxiv.org/pdf/2410.10134
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4403580700
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4403580700Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2410.10134Digital Object Identifier
- Title
-
Optimizing Fingerprint-Spectrum-Based Synchronization in Integrated Sensing and CommunicationsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-10-14Full publication date if available
- Authors
-
Xiao-Yang Wang, Shaoshi Yang, Hou-Yu Zhai, Christos Masouros, J. Andrew ZhangList of authors in order
- Landing page
-
https://arxiv.org/abs/2410.10134Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2410.10134Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2410.10134Direct OA link when available
- Concepts
-
Fingerprint (computing), Synchronization (alternating current), Computer science, Spectrum (functional analysis), Real-time computing, Telecommunications, Artificial intelligence, Physics, Channel (broadcasting), Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4403580700 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2410.10134 |
| ids.doi | https://doi.org/10.48550/arxiv.2410.10134 |
| ids.openalex | https://openalex.org/W4403580700 |
| fwci | 0.0 |
| type | preprint |
| title | Optimizing Fingerprint-Spectrum-Based Synchronization in Integrated Sensing and Communications |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11932 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9812999963760376 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2204 |
| topics[0].subfield.display_name | Biomedical Engineering |
| topics[0].display_name | Wireless Body Area Networks |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2777826928 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6880049109458923 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q3745713 |
| concepts[0].display_name | Fingerprint (computing) |
| concepts[1].id | https://openalex.org/C2778562939 |
| concepts[1].level | 3 |
| concepts[1].score | 0.6336712837219238 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1298791 |
| concepts[1].display_name | Synchronization (alternating current) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5572985410690308 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C156778621 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4563212990760803 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1365748 |
| concepts[3].display_name | Spectrum (functional analysis) |
| concepts[4].id | https://openalex.org/C79403827 |
| concepts[4].level | 1 |
| concepts[4].score | 0.37638652324676514 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q3988 |
| concepts[4].display_name | Real-time computing |
| concepts[5].id | https://openalex.org/C76155785 |
| concepts[5].level | 1 |
| concepts[5].score | 0.334760844707489 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[5].display_name | Telecommunications |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.19719448685646057 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C121332964 |
| concepts[7].level | 0 |
| concepts[7].score | 0.09009069204330444 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[7].display_name | Physics |
| concepts[8].id | https://openalex.org/C127162648 |
| concepts[8].level | 2 |
| concepts[8].score | 0.06760436296463013 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q16858953 |
| concepts[8].display_name | Channel (broadcasting) |
| concepts[9].id | https://openalex.org/C62520636 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[9].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/fingerprint |
| keywords[0].score | 0.6880049109458923 |
| keywords[0].display_name | Fingerprint (computing) |
| keywords[1].id | https://openalex.org/keywords/synchronization |
| keywords[1].score | 0.6336712837219238 |
| keywords[1].display_name | Synchronization (alternating current) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5572985410690308 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/spectrum |
| keywords[3].score | 0.4563212990760803 |
| keywords[3].display_name | Spectrum (functional analysis) |
| keywords[4].id | https://openalex.org/keywords/real-time-computing |
| keywords[4].score | 0.37638652324676514 |
| keywords[4].display_name | Real-time computing |
| keywords[5].id | https://openalex.org/keywords/telecommunications |
| keywords[5].score | 0.334760844707489 |
| keywords[5].display_name | Telecommunications |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.19719448685646057 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/physics |
| keywords[7].score | 0.09009069204330444 |
| keywords[7].display_name | Physics |
| keywords[8].id | https://openalex.org/keywords/channel |
| keywords[8].score | 0.06760436296463013 |
| keywords[8].display_name | Channel (broadcasting) |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2410.10134 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://arxiv.org/pdf/2410.10134 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2410.10134 |
| locations[1].id | doi:10.48550/arxiv.2410.10134 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article-journal |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2410.10134 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5041157917 |
| authorships[0].author.orcid | https://orcid.org/0009-0003-8608-8962 |
| authorships[0].author.display_name | Xiao-Yang Wang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wang, Xiao-Yang |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5029285951 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2395-1637 |
| authorships[1].author.display_name | Shaoshi Yang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yang, Shaoshi |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5052697845 |
| authorships[2].author.orcid | https://orcid.org/0009-0003-9851-8640 |
| authorships[2].author.display_name | Hou-Yu Zhai |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zhai, Hou-Yu |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5030334551 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-8259-6615 |
| authorships[3].author.display_name | Christos Masouros |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Masouros, Christos |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5100706723 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-6102-3762 |
| authorships[4].author.display_name | J. Andrew Zhang |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Zhang, J. Andrew |
| authorships[4].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2410.10134 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Optimizing Fingerprint-Spectrum-Based Synchronization in Integrated Sensing and Communications |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11932 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9812999963760376 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2204 |
| primary_topic.subfield.display_name | Biomedical Engineering |
| primary_topic.display_name | Wireless Body Area Networks |
| related_works | https://openalex.org/W2339806289, https://openalex.org/W2368132270, https://openalex.org/W2173185020, https://openalex.org/W4205397417, https://openalex.org/W2157505264, https://openalex.org/W109501413, https://openalex.org/W2075134888, https://openalex.org/W4388857868, https://openalex.org/W2946784807, https://openalex.org/W2031096545 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2410.10134 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2410.10134 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2410.10134 |
| primary_location.id | pmh:oai:arXiv.org:2410.10134 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://arxiv.org/pdf/2410.10134 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2410.10134 |
| publication_date | 2024-10-14 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 84, 110, 117 |
| abstract_inverted_index.TO | 78 |
| abstract_inverted_index.To | 25 |
| abstract_inverted_index.We | 81 |
| abstract_inverted_index.be | 49 |
| abstract_inverted_index.by | 52, 121 |
| abstract_inverted_index.in | 19, 42 |
| abstract_inverted_index.is | 103 |
| abstract_inverted_index.of | 56, 71, 75 |
| abstract_inverted_index.to | 5, 65 |
| abstract_inverted_index.we | 62, 107 |
| abstract_inverted_index.CFO | 76 |
| abstract_inverted_index.and | 8, 16, 33, 77, 87, 115 |
| abstract_inverted_index.can | 48 |
| abstract_inverted_index.for | 13 |
| abstract_inverted_index.has | 127 |
| abstract_inverted_index.not | 104 |
| abstract_inverted_index.our | 129 |
| abstract_inverted_index.out | 64 |
| abstract_inverted_index.set | 63 |
| abstract_inverted_index.the | 43, 53, 57, 73, 88, 122 |
| abstract_inverted_index.(TO) | 36 |
| abstract_inverted_index.been | 40 |
| abstract_inverted_index.find | 66 |
| abstract_inverted_index.have | 39 |
| abstract_inverted_index.lead | 4 |
| abstract_inverted_index.mean | 91 |
| abstract_inverted_index.test | 116 |
| abstract_inverted_index.then | 108 |
| abstract_inverted_index.this | 27, 97, 101 |
| abstract_inverted_index.time | 34 |
| abstract_inverted_index.when | 95 |
| abstract_inverted_index.(CFO) | 32 |
| abstract_inverted_index.(MSE) | 94 |
| abstract_inverted_index.error | 93 |
| abstract_inverted_index.first | 82 |
| abstract_inverted_index.often | 3 |
| abstract_inverted_index.radio | 1 |
| abstract_inverted_index.range | 7 |
| abstract_inverted_index.since | 100 |
| abstract_inverted_index.their | 46 |
| abstract_inverted_index.Hence, | 61 |
| abstract_inverted_index.choice | 55 |
| abstract_inverted_index.derive | 83 |
| abstract_inverted_index.issue, | 28 |
| abstract_inverted_index.mobile | 22 |
| abstract_inverted_index.offset | 31, 35 |
| abstract_inverted_index.posing | 11 |
| abstract_inverted_index.square | 92 |
| abstract_inverted_index.window | 59, 68, 102, 112, 119 |
| abstract_inverted_index.(PMNs). | 24 |
| abstract_inverted_index.address | 26 |
| abstract_inverted_index.capable | 70 |
| abstract_inverted_index.carrier | 29 |
| abstract_inverted_index.develop | 109 |
| abstract_inverted_index.precise | 14 |
| abstract_inverted_index.special | 118 |
| abstract_inverted_index.studied | 41 |
| abstract_inverted_index.window, | 86 |
| abstract_inverted_index.window. | 98 |
| abstract_inverted_index.However, | 45, 99 |
| abstract_inverted_index.affected | 51 |
| abstract_inverted_index.networks | 23 |
| abstract_inverted_index.specific | 54 |
| abstract_inverted_index.superior | 67 |
| abstract_inverted_index.utilized | 58 |
| abstract_inverted_index.velocity | 9, 17 |
| abstract_inverted_index.verified | 128 |
| abstract_inverted_index.Numerical | 125 |
| abstract_inverted_index.analysis. | 130 |
| abstract_inverted_index.criterion | 114 |
| abstract_inverted_index.frequency | 30 |
| abstract_inverted_index.functions | 69 |
| abstract_inverted_index.generated | 120 |
| abstract_inverted_index.improving | 72 |
| abstract_inverted_index.practical | 111 |
| abstract_inverted_index.selection | 113 |
| abstract_inverted_index.utilizing | 96 |
| abstract_inverted_index.algorithm. | 124 |
| abstract_inverted_index.algorithms | 38 |
| abstract_inverted_index.ambiguity, | 10 |
| abstract_inverted_index.challenges | 12 |
| abstract_inverted_index.estimation | 18, 79 |
| abstract_inverted_index.functions. | 60 |
| abstract_inverted_index.perceptive | 21 |
| abstract_inverted_index.simulation | 126 |
| abstract_inverted_index.achievable, | 106 |
| abstract_inverted_index.algorithms. | 80 |
| abstract_inverted_index.literature. | 44 |
| abstract_inverted_index.performance | 47, 74 |
| abstract_inverted_index.positioning | 15 |
| abstract_inverted_index.practically | 105 |
| abstract_inverted_index.significant | 6 |
| abstract_inverted_index.theoretical | 89 |
| abstract_inverted_index.Asynchronous | 0 |
| abstract_inverted_index.near-optimal | 85 |
| abstract_inverted_index.transceivers | 2 |
| abstract_inverted_index.significantly | 50 |
| abstract_inverted_index.passive-sensing | 20 |
| abstract_inverted_index.synchronization | 37, 90 |
| abstract_inverted_index.super-resolution | 123 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.21296884 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |