Optimizing scan duration and tracer dose in radiomic analysis for 18F-FDG PET/MR brain cancer Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.21203/rs.3.rs-4019949/v1
Objectives: This study is to optimize scan duration and tracer dose in radiomic analysis for 18F-FDG PET/MR brain cancer. Methods: Seventeen patients with brain cancer underwent PET/MR scans with injection of 3.70 MBq/kg 18F-FDG. PET images were split into 5 (PETSD5), 10 (PETSD10), 15 (PETSD15), and 25 (PETSD25) min duration groups, and the injected dose for each group with 10% (PETD10%), 20% (PETD20%), 33% (PETD33%) and 50% (PETD50%) dose levels were then simulated. 93 radiomic features were extracted and ICC was calculated for each feature between groups, respectively. Results: ICC varied with the feature type, scan duration, and tracer dose. ICC for PETSD10, PETSD15, and PETSD25 in relation to PETSD5 showed an obviously decrease with the lengthen of scan duration and the reduction of tracer dose. ICC on PETD10%, PETD20%, PETD33%, and PETD50% in relation to full-dose PET gradually increased with the enlargement of tracer dose and the extending of scan duration. ICC on different combinations with respect to PETSD5 at full-dose presented similar trends in most features for PETSD10 at 50%, PETSD15 at 33%, and PETSD25 at 20%. Besides, 28 features were non-sensitive to different scan durations and/or dose levels. The intertations between features were slightly affected by different scan durations and/or dose levels, in which discrepancies were sensitive to the specific feature type. Conclusions: PETSD10 at 50% might be the clinically adaptable solution for 18F-FDG PET/MR brain cancer, showing reduced radiation burden, better compatibility and clinical feasibility. Changes in scan duration and/or tracer dose in PET should be approached with caution.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.21203/rs.3.rs-4019949/v1
- https://www.researchsquare.com/article/rs-4019949/latest.pdf
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4392714043
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4392714043Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.21203/rs.3.rs-4019949/v1Digital Object Identifier
- Title
-
Optimizing scan duration and tracer dose in radiomic analysis for 18F-FDG PET/MR brain cancerWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-03-12Full publication date if available
- Authors
-
Mingzan Zhuang, Zhifen Qiu, Xianru Li, Tianwu XieList of authors in order
- Landing page
-
https://doi.org/10.21203/rs.3.rs-4019949/v1Publisher landing page
- PDF URL
-
https://www.researchsquare.com/article/rs-4019949/latest.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.researchsquare.com/article/rs-4019949/latest.pdfDirect OA link when available
- Concepts
-
Nuclear medicine, Medicine, TRACER, Positron emission tomography, Cancer, Duration (music), Brain cancer, Pet imaging, Medical physics, Internal medicine, Physics, Nuclear physics, AcousticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4392714043 |
|---|---|
| doi | https://doi.org/10.21203/rs.3.rs-4019949/v1 |
| ids.doi | https://doi.org/10.21203/rs.3.rs-4019949/v1 |
| ids.openalex | https://openalex.org/W4392714043 |
| fwci | 0.0 |
| type | preprint |
| title | Optimizing scan duration and tracer dose in radiomic analysis for 18F-FDG PET/MR brain cancer |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12422 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2741 |
| topics[0].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[0].display_name | Radiomics and Machine Learning in Medical Imaging |
| topics[1].id | https://openalex.org/T10522 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9991999864578247 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | Medical Imaging Techniques and Applications |
| topics[2].id | https://openalex.org/T12386 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9973999857902527 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2204 |
| topics[2].subfield.display_name | Biomedical Engineering |
| topics[2].display_name | Advanced X-ray and CT Imaging |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2989005 |
| concepts[0].level | 1 |
| concepts[0].score | 0.5877268314361572 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q214963 |
| concepts[0].display_name | Nuclear medicine |
| concepts[1].id | https://openalex.org/C71924100 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5779362320899963 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[1].display_name | Medicine |
| concepts[2].id | https://openalex.org/C2778863792 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5070717334747314 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q16909918 |
| concepts[2].display_name | TRACER |
| concepts[3].id | https://openalex.org/C2775842073 |
| concepts[3].level | 2 |
| concepts[3].score | 0.47471892833709717 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q208376 |
| concepts[3].display_name | Positron emission tomography |
| concepts[4].id | https://openalex.org/C121608353 |
| concepts[4].level | 2 |
| concepts[4].score | 0.46405211091041565 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q12078 |
| concepts[4].display_name | Cancer |
| concepts[5].id | https://openalex.org/C112758219 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4497615098953247 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q16038819 |
| concepts[5].display_name | Duration (music) |
| concepts[6].id | https://openalex.org/C2994463257 |
| concepts[6].level | 3 |
| concepts[6].score | 0.4423687756061554 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q233309 |
| concepts[6].display_name | Brain cancer |
| concepts[7].id | https://openalex.org/C3017724952 |
| concepts[7].level | 3 |
| concepts[7].score | 0.440912127494812 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q208376 |
| concepts[7].display_name | Pet imaging |
| concepts[8].id | https://openalex.org/C19527891 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3604829013347626 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1120908 |
| concepts[8].display_name | Medical physics |
| concepts[9].id | https://openalex.org/C126322002 |
| concepts[9].level | 1 |
| concepts[9].score | 0.209367036819458 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[9].display_name | Internal medicine |
| concepts[10].id | https://openalex.org/C121332964 |
| concepts[10].level | 0 |
| concepts[10].score | 0.09139969944953918 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[10].display_name | Physics |
| concepts[11].id | https://openalex.org/C185544564 |
| concepts[11].level | 1 |
| concepts[11].score | 0.06284517049789429 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q81197 |
| concepts[11].display_name | Nuclear physics |
| concepts[12].id | https://openalex.org/C24890656 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q82811 |
| concepts[12].display_name | Acoustics |
| keywords[0].id | https://openalex.org/keywords/nuclear-medicine |
| keywords[0].score | 0.5877268314361572 |
| keywords[0].display_name | Nuclear medicine |
| keywords[1].id | https://openalex.org/keywords/medicine |
| keywords[1].score | 0.5779362320899963 |
| keywords[1].display_name | Medicine |
| keywords[2].id | https://openalex.org/keywords/tracer |
| keywords[2].score | 0.5070717334747314 |
| keywords[2].display_name | TRACER |
| keywords[3].id | https://openalex.org/keywords/positron-emission-tomography |
| keywords[3].score | 0.47471892833709717 |
| keywords[3].display_name | Positron emission tomography |
| keywords[4].id | https://openalex.org/keywords/cancer |
| keywords[4].score | 0.46405211091041565 |
| keywords[4].display_name | Cancer |
| keywords[5].id | https://openalex.org/keywords/duration |
| keywords[5].score | 0.4497615098953247 |
| keywords[5].display_name | Duration (music) |
| keywords[6].id | https://openalex.org/keywords/brain-cancer |
| keywords[6].score | 0.4423687756061554 |
| keywords[6].display_name | Brain cancer |
| keywords[7].id | https://openalex.org/keywords/pet-imaging |
| keywords[7].score | 0.440912127494812 |
| keywords[7].display_name | Pet imaging |
| keywords[8].id | https://openalex.org/keywords/medical-physics |
| keywords[8].score | 0.3604829013347626 |
| keywords[8].display_name | Medical physics |
| keywords[9].id | https://openalex.org/keywords/internal-medicine |
| keywords[9].score | 0.209367036819458 |
| keywords[9].display_name | Internal medicine |
| keywords[10].id | https://openalex.org/keywords/physics |
| keywords[10].score | 0.09139969944953918 |
| keywords[10].display_name | Physics |
| keywords[11].id | https://openalex.org/keywords/nuclear-physics |
| keywords[11].score | 0.06284517049789429 |
| keywords[11].display_name | Nuclear physics |
| language | en |
| locations[0].id | doi:10.21203/rs.3.rs-4019949/v1 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402450 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Research Square (Research Square) |
| locations[0].source.host_organization | https://openalex.org/I4210096694 |
| locations[0].source.host_organization_name | Research Square (United States) |
| locations[0].source.host_organization_lineage | https://openalex.org/I4210096694 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.researchsquare.com/article/rs-4019949/latest.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.21203/rs.3.rs-4019949/v1 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5015701951 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3075-401X |
| authorships[0].author.display_name | Mingzan Zhuang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210086600 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Nuclear Medicine, Meizhou People's Hospital |
| authorships[0].institutions[0].id | https://openalex.org/I4210086600 |
| authorships[0].institutions[0].ror | https://ror.org/0026mdx79 |
| authorships[0].institutions[0].type | healthcare |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210086600 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Meizhou City People's Hospital |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Mingzan Zhuang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Nuclear Medicine, Meizhou People's Hospital |
| authorships[1].author.id | https://openalex.org/A5043840077 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Zhifen Qiu |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210086600 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Nuclear Medicine, Meizhou People's Hospital |
| authorships[1].institutions[0].id | https://openalex.org/I4210086600 |
| authorships[1].institutions[0].ror | https://ror.org/0026mdx79 |
| authorships[1].institutions[0].type | healthcare |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210086600 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Meizhou City People's Hospital |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zhifen Qiu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Nuclear Medicine, Meizhou People's Hospital |
| authorships[2].author.id | https://openalex.org/A5038461456 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Xianru Li |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210086600 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Nuclear Medicine, Meizhou People's Hospital |
| authorships[2].institutions[0].id | https://openalex.org/I4210086600 |
| authorships[2].institutions[0].ror | https://ror.org/0026mdx79 |
| authorships[2].institutions[0].type | healthcare |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210086600 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Meizhou City People's Hospital |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Xianru Li |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Nuclear Medicine, Meizhou People's Hospital |
| authorships[3].author.id | https://openalex.org/A5102777264 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-3447-7707 |
| authorships[3].author.display_name | Tianwu Xie |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I24943067 |
| authorships[3].affiliations[0].raw_affiliation_string | Institute of Radiation Medicine, Fudan University |
| authorships[3].institutions[0].id | https://openalex.org/I24943067 |
| authorships[3].institutions[0].ror | https://ror.org/013q1eq08 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I24943067 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Fudan University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Tianwu Xie |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Institute of Radiation Medicine, Fudan University |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.researchsquare.com/article/rs-4019949/latest.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Optimizing scan duration and tracer dose in radiomic analysis for 18F-FDG PET/MR brain cancer |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12422 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2741 |
| primary_topic.subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| primary_topic.display_name | Radiomics and Machine Learning in Medical Imaging |
| related_works | https://openalex.org/W2186218760, https://openalex.org/W2473498105, https://openalex.org/W2919691020, https://openalex.org/W2769989561, https://openalex.org/W2189154756, https://openalex.org/W2168768514, https://openalex.org/W4389219344, https://openalex.org/W2088646614, https://openalex.org/W3029637811, https://openalex.org/W2319489245 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.21203/rs.3.rs-4019949/v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402450 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Research Square (Research Square) |
| best_oa_location.source.host_organization | https://openalex.org/I4210096694 |
| best_oa_location.source.host_organization_name | Research Square (United States) |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I4210096694 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.researchsquare.com/article/rs-4019949/latest.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-4019949/v1 |
| primary_location.id | doi:10.21203/rs.3.rs-4019949/v1 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402450 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Research Square (Research Square) |
| primary_location.source.host_organization | https://openalex.org/I4210096694 |
| primary_location.source.host_organization_name | Research Square (United States) |
| primary_location.source.host_organization_lineage | https://openalex.org/I4210096694 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.researchsquare.com/article/rs-4019949/latest.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-4019949/v1 |
| publication_date | 2024-03-12 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.5 | 40 |
| abstract_inverted_index.10 | 42 |
| abstract_inverted_index.15 | 44 |
| abstract_inverted_index.25 | 47 |
| abstract_inverted_index.28 | 181 |
| abstract_inverted_index.93 | 74 |
| abstract_inverted_index.an | 112 |
| abstract_inverted_index.at | 161, 171, 174, 178, 218 |
| abstract_inverted_index.be | 221, 250 |
| abstract_inverted_index.by | 199 |
| abstract_inverted_index.in | 12, 107, 134, 166, 206, 241, 247 |
| abstract_inverted_index.is | 4 |
| abstract_inverted_index.of | 31, 118, 124, 144, 150 |
| abstract_inverted_index.on | 128, 154 |
| abstract_inverted_index.to | 5, 109, 136, 159, 185, 211 |
| abstract_inverted_index.10% | 60 |
| abstract_inverted_index.20% | 62 |
| abstract_inverted_index.33% | 64 |
| abstract_inverted_index.50% | 67, 219 |
| abstract_inverted_index.ICC | 80, 101, 127, 153 |
| abstract_inverted_index.PET | 35, 138, 248 |
| abstract_inverted_index.The | 192 |
| abstract_inverted_index.and | 9, 46, 52, 66, 79, 98, 105, 121, 132, 147, 176, 237 |
| abstract_inverted_index.for | 15, 56, 83, 102, 169, 226 |
| abstract_inverted_index.min | 49 |
| abstract_inverted_index.the | 53, 93, 116, 122, 142, 148, 212, 222 |
| abstract_inverted_index.was | 81 |
| abstract_inverted_index.20%. | 179 |
| abstract_inverted_index.3.70 | 32 |
| abstract_inverted_index.33%, | 175 |
| abstract_inverted_index.50%, | 172 |
| abstract_inverted_index.This | 2 |
| abstract_inverted_index.dose | 11, 55, 69, 146, 190, 204, 246 |
| abstract_inverted_index.each | 57, 84 |
| abstract_inverted_index.into | 39 |
| abstract_inverted_index.most | 167 |
| abstract_inverted_index.scan | 7, 96, 119, 151, 187, 201, 242 |
| abstract_inverted_index.then | 72 |
| abstract_inverted_index.were | 37, 71, 77, 183, 196, 209 |
| abstract_inverted_index.with | 23, 29, 59, 92, 115, 141, 157, 252 |
| abstract_inverted_index.brain | 18, 24, 229 |
| abstract_inverted_index.dose. | 100, 126 |
| abstract_inverted_index.group | 58 |
| abstract_inverted_index.might | 220 |
| abstract_inverted_index.scans | 28 |
| abstract_inverted_index.split | 38 |
| abstract_inverted_index.study | 3 |
| abstract_inverted_index.type, | 95 |
| abstract_inverted_index.type. | 215 |
| abstract_inverted_index.which | 207 |
| abstract_inverted_index.MBq/kg | 33 |
| abstract_inverted_index.PET/MR | 17, 27, 228 |
| abstract_inverted_index.PETSD5 | 110, 160 |
| abstract_inverted_index.and/or | 189, 203, 244 |
| abstract_inverted_index.better | 235 |
| abstract_inverted_index.cancer | 25 |
| abstract_inverted_index.images | 36 |
| abstract_inverted_index.levels | 70 |
| abstract_inverted_index.should | 249 |
| abstract_inverted_index.showed | 111 |
| abstract_inverted_index.tracer | 10, 99, 125, 145, 245 |
| abstract_inverted_index.trends | 165 |
| abstract_inverted_index.varied | 91 |
| abstract_inverted_index.18F-FDG | 16, 227 |
| abstract_inverted_index.Changes | 240 |
| abstract_inverted_index.PETD50% | 133 |
| abstract_inverted_index.PETSD10 | 170, 217 |
| abstract_inverted_index.PETSD15 | 173 |
| abstract_inverted_index.PETSD25 | 106, 177 |
| abstract_inverted_index.between | 86, 194 |
| abstract_inverted_index.burden, | 234 |
| abstract_inverted_index.cancer, | 230 |
| abstract_inverted_index.cancer. | 19 |
| abstract_inverted_index.feature | 85, 94, 214 |
| abstract_inverted_index.groups, | 51, 87 |
| abstract_inverted_index.levels, | 205 |
| abstract_inverted_index.levels. | 191 |
| abstract_inverted_index.reduced | 232 |
| abstract_inverted_index.respect | 158 |
| abstract_inverted_index.showing | 231 |
| abstract_inverted_index.similar | 164 |
| abstract_inverted_index.18F-FDG. | 34 |
| abstract_inverted_index.Besides, | 180 |
| abstract_inverted_index.PETD10%, | 129 |
| abstract_inverted_index.PETD20%, | 130 |
| abstract_inverted_index.PETD33%, | 131 |
| abstract_inverted_index.PETSD10, | 103 |
| abstract_inverted_index.PETSD15, | 104 |
| abstract_inverted_index.affected | 198 |
| abstract_inverted_index.analysis | 14 |
| abstract_inverted_index.caution. | 253 |
| abstract_inverted_index.clinical | 238 |
| abstract_inverted_index.decrease | 114 |
| abstract_inverted_index.duration | 8, 50, 120, 243 |
| abstract_inverted_index.features | 76, 168, 182, 195 |
| abstract_inverted_index.injected | 54 |
| abstract_inverted_index.lengthen | 117 |
| abstract_inverted_index.optimize | 6 |
| abstract_inverted_index.patients | 22 |
| abstract_inverted_index.radiomic | 13, 75 |
| abstract_inverted_index.relation | 108, 135 |
| abstract_inverted_index.slightly | 197 |
| abstract_inverted_index.solution | 225 |
| abstract_inverted_index.specific | 213 |
| abstract_inverted_index.(PETD33%) | 65 |
| abstract_inverted_index.(PETD50%) | 68 |
| abstract_inverted_index.(PETSD25) | 48 |
| abstract_inverted_index.(PETSD5), | 41 |
| abstract_inverted_index.Seventeen | 21 |
| abstract_inverted_index.adaptable | 224 |
| abstract_inverted_index.different | 155, 186, 200 |
| abstract_inverted_index.duration, | 97 |
| abstract_inverted_index.duration. | 152 |
| abstract_inverted_index.durations | 188, 202 |
| abstract_inverted_index.extending | 149 |
| abstract_inverted_index.extracted | 78 |
| abstract_inverted_index.full-dose | 137, 162 |
| abstract_inverted_index.gradually | 139 |
| abstract_inverted_index.increased | 140 |
| abstract_inverted_index.injection | 30 |
| abstract_inverted_index.obviously | 113 |
| abstract_inverted_index.presented | 163 |
| abstract_inverted_index.radiation | 233 |
| abstract_inverted_index.reduction | 123 |
| abstract_inverted_index.sensitive | 210 |
| abstract_inverted_index.underwent | 26 |
| abstract_inverted_index.(PETD10%), | 61 |
| abstract_inverted_index.(PETD20%), | 63 |
| abstract_inverted_index.(PETSD10), | 43 |
| abstract_inverted_index.(PETSD15), | 45 |
| abstract_inverted_index.</bold>ICC | 90 |
| abstract_inverted_index.approached | 251 |
| abstract_inverted_index.calculated | 82 |
| abstract_inverted_index.clinically | 223 |
| abstract_inverted_index.simulated. | 73 |
| abstract_inverted_index.enlargement | 143 |
| abstract_inverted_index.combinations | 156 |
| abstract_inverted_index.feasibility. | 239 |
| abstract_inverted_index.intertations | 193 |
| abstract_inverted_index.compatibility | 236 |
| abstract_inverted_index.discrepancies | 208 |
| abstract_inverted_index.non-sensitive | 184 |
| abstract_inverted_index.respectively. | 88 |
| abstract_inverted_index.<bold>Results: | 89 |
| abstract_inverted_index.<bold>Methods:</bold> | 20 |
| abstract_inverted_index.<title>Abstract</title> | 0 |
| abstract_inverted_index.<bold>Objectives:</bold> | 1 |
| abstract_inverted_index.<bold>Conclusions:</bold> | 216 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.7900000214576721 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.0485902 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |