“Optimizing sEMG Gesture Recognition with Stacked Autoencoder Neural Network for Bionic Hand” Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1016/j.mex.2025.103207
This study presents a novel deep learning approach for surface electromyography (sEMG) gesture recognition using stacked autoencoder neural network (SAE)s. The method leverages hierarchical representation learning to extract meaningful features from raw sEMG signals, enhancing the precision and robustness of gesture classification.•Feature Extraction and Classification MODWT Decomposition: The sEMG signals were decomposed using the MODWT DECOMPOSITION(Maximal Overlap Discrete Wavelet Transform) to capture various frequency components.•Time Domain Parameters: A total of 28 features per subject were extracted from the time domain, including statistical and spectral features.•Classifier Evaluation: Initial evaluations involved Autoencoder and LDA (Linear Discriminant Analysis) classifiers, with Autoencoder achieving an average accuracy of 77.96 % ± 1.24, outperforming LDA's 65.36 % ± 1.09.Advanced Neural Network Approach: Stacked Autoencoder Neural Network: To address challenges in distinguishing similar gestures within grasp groups, a Stacked Autoencoder Neural Network was employed. This advanced neural network architecture improved classification accuracy to over 100 %, demonstrating its effectiveness in handling complex gesture recognition tasks. These findings emphasize the significant potential of deep learning models in enhancing prosthetic control and rehabilitation technologies. . To verify these findings, we developed a 3d hand module in ADAMS software that is simulated using Matlab-ADAMS cosimulation.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.mex.2025.103207
- OA Status
- gold
- Cited By
- 1
- References
- 12
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4407599555
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4407599555Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.mex.2025.103207Digital Object Identifier
- Title
-
“Optimizing sEMG Gesture Recognition with Stacked Autoencoder Neural Network for Bionic Hand”Work title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-02-15Full publication date if available
- Authors
-
Mahendra Pratap Yadav, Sandip Raosaheb PatilList of authors in order
- Landing page
-
https://doi.org/10.1016/j.mex.2025.103207Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.mex.2025.103207Direct OA link when available
- Concepts
-
Autoencoder, Artificial neural network, Artificial intelligence, Computer science, Pattern recognition (psychology), Gesture, Speech recognition, EngineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
12Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4407599555 |
|---|---|
| doi | https://doi.org/10.1016/j.mex.2025.103207 |
| ids.doi | https://doi.org/10.1016/j.mex.2025.103207 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40071216 |
| ids.openalex | https://openalex.org/W4407599555 |
| fwci | 1.99286181 |
| type | article |
| title | “Optimizing sEMG Gesture Recognition with Stacked Autoencoder Neural Network for Bionic Hand” |
| biblio.issue | |
| biblio.volume | 14 |
| biblio.last_page | 103207 |
| biblio.first_page | 103207 |
| topics[0].id | https://openalex.org/T10784 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2204 |
| topics[0].subfield.display_name | Biomedical Engineering |
| topics[0].display_name | Muscle activation and electromyography studies |
| topics[1].id | https://openalex.org/T10429 |
| topics[1].field.id | https://openalex.org/fields/28 |
| topics[1].field.display_name | Neuroscience |
| topics[1].score | 0.9927999973297119 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2805 |
| topics[1].subfield.display_name | Cognitive Neuroscience |
| topics[1].display_name | EEG and Brain-Computer Interfaces |
| topics[2].id | https://openalex.org/T11398 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9907000064849854 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1709 |
| topics[2].subfield.display_name | Human-Computer Interaction |
| topics[2].display_name | Hand Gesture Recognition Systems |
| is_xpac | False |
| apc_list.value | 500 |
| apc_list.currency | USD |
| apc_list.value_usd | 500 |
| apc_paid.value | 500 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 500 |
| concepts[0].id | https://openalex.org/C101738243 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7882915735244751 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q786435 |
| concepts[0].display_name | Autoencoder |
| concepts[1].id | https://openalex.org/C50644808 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6308821439743042 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[1].display_name | Artificial neural network |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5760699510574341 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5471578240394592 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C153180895 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5014777183532715 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[4].display_name | Pattern recognition (psychology) |
| concepts[5].id | https://openalex.org/C207347870 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4890378415584564 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q371174 |
| concepts[5].display_name | Gesture |
| concepts[6].id | https://openalex.org/C28490314 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4742516577243805 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q189436 |
| concepts[6].display_name | Speech recognition |
| concepts[7].id | https://openalex.org/C127413603 |
| concepts[7].level | 0 |
| concepts[7].score | 0.4051533639431 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[7].display_name | Engineering |
| keywords[0].id | https://openalex.org/keywords/autoencoder |
| keywords[0].score | 0.7882915735244751 |
| keywords[0].display_name | Autoencoder |
| keywords[1].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[1].score | 0.6308821439743042 |
| keywords[1].display_name | Artificial neural network |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.5760699510574341 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.5471578240394592 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/pattern-recognition |
| keywords[4].score | 0.5014777183532715 |
| keywords[4].display_name | Pattern recognition (psychology) |
| keywords[5].id | https://openalex.org/keywords/gesture |
| keywords[5].score | 0.4890378415584564 |
| keywords[5].display_name | Gesture |
| keywords[6].id | https://openalex.org/keywords/speech-recognition |
| keywords[6].score | 0.4742516577243805 |
| keywords[6].display_name | Speech recognition |
| keywords[7].id | https://openalex.org/keywords/engineering |
| keywords[7].score | 0.4051533639431 |
| keywords[7].display_name | Engineering |
| language | en |
| locations[0].id | doi:10.1016/j.mex.2025.103207 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2898269294 |
| locations[0].source.issn | 2215-0161 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2215-0161 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | MethodsX |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | MethodsX |
| locations[0].landing_page_url | https://doi.org/10.1016/j.mex.2025.103207 |
| locations[1].id | pmid:40071216 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | MethodsX |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40071216 |
| locations[2].id | pmh:oai:doaj.org/article:1aa5844d9d61416192f0e3ae736c041f |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | MethodsX, Vol 14, Iss , Pp 103207- (2025) |
| locations[2].landing_page_url | https://doaj.org/article/1aa5844d9d61416192f0e3ae736c041f |
| locations[3].id | pmh:oai:europepmc.org:10706531 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400806 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | Europe PMC (PubMed Central) |
| locations[3].source.host_organization | https://openalex.org/I1303153112 |
| locations[3].source.host_organization_name | European Bioinformatics Institute |
| locations[3].source.host_organization_lineage | https://openalex.org/I1303153112 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11894319 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5056768928 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4224-3142 |
| authorships[0].author.display_name | Mahendra Pratap Yadav |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I887998513 |
| authorships[0].affiliations[0].raw_affiliation_string | Bharati Vidyapeeth's College Of Engineering for Women, Pune, India. |
| authorships[0].affiliations[1].raw_affiliation_string | All India Shri Shivaji Memorial Society's Institute Of Information Technology, India. |
| authorships[0].institutions[0].id | https://openalex.org/I887998513 |
| authorships[0].institutions[0].ror | https://ror.org/0052mmx10 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I887998513 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | Bharati Vidyapeeth Deemed University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Mr Amol Pandurang Yadav |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | All India Shri Shivaji Memorial Society's Institute Of Information Technology, India., Bharati Vidyapeeth's College Of Engineering for Women, Pune, India. |
| authorships[1].author.id | https://openalex.org/A5114014814 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Sandip Raosaheb Patil |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I887998513 |
| authorships[1].affiliations[0].raw_affiliation_string | Bharati Vidyapeeth's College Of Engineering for Women, Pune, India. |
| authorships[1].institutions[0].id | https://openalex.org/I887998513 |
| authorships[1].institutions[0].ror | https://ror.org/0052mmx10 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I887998513 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Bharati Vidyapeeth Deemed University |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Dr Sandip R Patil |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Bharati Vidyapeeth's College Of Engineering for Women, Pune, India. |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.mex.2025.103207 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-02-16T00:00:00 |
| display_name | “Optimizing sEMG Gesture Recognition with Stacked Autoencoder Neural Network for Bionic Hand” |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10784 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2204 |
| primary_topic.subfield.display_name | Biomedical Engineering |
| primary_topic.display_name | Muscle activation and electromyography studies |
| related_works | https://openalex.org/W3013693939, https://openalex.org/W2566616303, https://openalex.org/W2159052453, https://openalex.org/W3131327266, https://openalex.org/W2734887215, https://openalex.org/W2803255133, https://openalex.org/W4297051394, https://openalex.org/W2752972570, https://openalex.org/W4386815338, https://openalex.org/W2145836866 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1016/j.mex.2025.103207 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2898269294 |
| best_oa_location.source.issn | 2215-0161 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2215-0161 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | MethodsX |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | MethodsX |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.mex.2025.103207 |
| primary_location.id | doi:10.1016/j.mex.2025.103207 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2898269294 |
| primary_location.source.issn | 2215-0161 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2215-0161 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | MethodsX |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | MethodsX |
| primary_location.landing_page_url | https://doi.org/10.1016/j.mex.2025.103207 |
| publication_date | 2025-02-15 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2946263433, https://openalex.org/W2919115771, https://openalex.org/W4238209029, https://openalex.org/W1976606095, https://openalex.org/W3206025339, https://openalex.org/W6677879514, https://openalex.org/W6660562693, https://openalex.org/W2171188488, https://openalex.org/W4404142223, https://openalex.org/W3014229143, https://openalex.org/W6602623533, https://openalex.org/W2119008936 |
| referenced_works_count | 12 |
| abstract_inverted_index.% | 104, 110 |
| abstract_inverted_index.. | 175 |
| abstract_inverted_index.A | 67 |
| abstract_inverted_index.a | 3, 130, 182 |
| abstract_inverted_index.%, | 148 |
| abstract_inverted_index.28 | 70 |
| abstract_inverted_index.3d | 183 |
| abstract_inverted_index.To | 120, 176 |
| abstract_inverted_index.an | 99 |
| abstract_inverted_index.in | 123, 152, 168, 186 |
| abstract_inverted_index.is | 190 |
| abstract_inverted_index.of | 39, 69, 102, 164 |
| abstract_inverted_index.to | 26, 60, 145 |
| abstract_inverted_index.we | 180 |
| abstract_inverted_index.± | 105, 111 |
| abstract_inverted_index.100 | 147 |
| abstract_inverted_index.LDA | 91 |
| abstract_inverted_index.The | 20, 47 |
| abstract_inverted_index.and | 37, 43, 82, 90, 172 |
| abstract_inverted_index.for | 8 |
| abstract_inverted_index.its | 150 |
| abstract_inverted_index.per | 72 |
| abstract_inverted_index.raw | 31 |
| abstract_inverted_index.the | 35, 53, 77, 161 |
| abstract_inverted_index.was | 135 |
| abstract_inverted_index.This | 0, 137 |
| abstract_inverted_index.deep | 5, 165 |
| abstract_inverted_index.from | 30, 76 |
| abstract_inverted_index.hand | 184 |
| abstract_inverted_index.over | 146 |
| abstract_inverted_index.sEMG | 32, 48 |
| abstract_inverted_index.that | 189 |
| abstract_inverted_index.time | 78 |
| abstract_inverted_index.were | 50, 74 |
| abstract_inverted_index.with | 96 |
| abstract_inverted_index.1.24, | 106 |
| abstract_inverted_index.65.36 | 109 |
| abstract_inverted_index.77.96 | 103 |
| abstract_inverted_index.ADAMS | 187 |
| abstract_inverted_index.LDA's | 108 |
| abstract_inverted_index.MODWT | 45, 54 |
| abstract_inverted_index.These | 158 |
| abstract_inverted_index.grasp | 128 |
| abstract_inverted_index.novel | 4 |
| abstract_inverted_index.study | 1 |
| abstract_inverted_index.these | 178 |
| abstract_inverted_index.total | 68 |
| abstract_inverted_index.using | 14, 52, 192 |
| abstract_inverted_index.(sEMG) | 11 |
| abstract_inverted_index.Domain | 65 |
| abstract_inverted_index.Neural | 113, 118, 133 |
| abstract_inverted_index.method | 21 |
| abstract_inverted_index.models | 167 |
| abstract_inverted_index.module | 185 |
| abstract_inverted_index.neural | 17, 139 |
| abstract_inverted_index.tasks. | 157 |
| abstract_inverted_index.verify | 177 |
| abstract_inverted_index.within | 127 |
| abstract_inverted_index.(Linear | 92 |
| abstract_inverted_index.(SAE)s. | 19 |
| abstract_inverted_index.Initial | 86 |
| abstract_inverted_index.Network | 114, 134 |
| abstract_inverted_index.Overlap | 56 |
| abstract_inverted_index.Stacked | 116, 131 |
| abstract_inverted_index.Wavelet | 58 |
| abstract_inverted_index.address | 121 |
| abstract_inverted_index.average | 100 |
| abstract_inverted_index.capture | 61 |
| abstract_inverted_index.complex | 154 |
| abstract_inverted_index.control | 171 |
| abstract_inverted_index.domain, | 79 |
| abstract_inverted_index.extract | 27 |
| abstract_inverted_index.gesture | 12, 40, 155 |
| abstract_inverted_index.groups, | 129 |
| abstract_inverted_index.network | 18, 140 |
| abstract_inverted_index.signals | 49 |
| abstract_inverted_index.similar | 125 |
| abstract_inverted_index.stacked | 15 |
| abstract_inverted_index.subject | 73 |
| abstract_inverted_index.surface | 9 |
| abstract_inverted_index.various | 62 |
| abstract_inverted_index.Discrete | 57 |
| abstract_inverted_index.Network: | 119 |
| abstract_inverted_index.accuracy | 101, 144 |
| abstract_inverted_index.advanced | 138 |
| abstract_inverted_index.approach | 7 |
| abstract_inverted_index.features | 29, 71 |
| abstract_inverted_index.findings | 159 |
| abstract_inverted_index.gestures | 126 |
| abstract_inverted_index.handling | 153 |
| abstract_inverted_index.improved | 142 |
| abstract_inverted_index.involved | 88 |
| abstract_inverted_index.learning | 6, 25, 166 |
| abstract_inverted_index.presents | 2 |
| abstract_inverted_index.signals, | 33 |
| abstract_inverted_index.software | 188 |
| abstract_inverted_index.spectral | 83 |
| abstract_inverted_index.Analysis) | 94 |
| abstract_inverted_index.Approach: | 115 |
| abstract_inverted_index.achieving | 98 |
| abstract_inverted_index.developed | 181 |
| abstract_inverted_index.emphasize | 160 |
| abstract_inverted_index.employed. | 136 |
| abstract_inverted_index.enhancing | 34, 169 |
| abstract_inverted_index.extracted | 75 |
| abstract_inverted_index.findings, | 179 |
| abstract_inverted_index.frequency | 63 |
| abstract_inverted_index.including | 80 |
| abstract_inverted_index.leverages | 22 |
| abstract_inverted_index.potential | 163 |
| abstract_inverted_index.precision | 36 |
| abstract_inverted_index.simulated | 191 |
| abstract_inverted_index.Extraction | 42 |
| abstract_inverted_index.Transform) | 59 |
| abstract_inverted_index.challenges | 122 |
| abstract_inverted_index.decomposed | 51 |
| abstract_inverted_index.meaningful | 28 |
| abstract_inverted_index.prosthetic | 170 |
| abstract_inverted_index.robustness | 38 |
| abstract_inverted_index.Autoencoder | 89, 97, 117, 132 |
| abstract_inverted_index.Evaluation: | 85 |
| abstract_inverted_index.Parameters: | 66 |
| abstract_inverted_index.autoencoder | 16 |
| abstract_inverted_index.evaluations | 87 |
| abstract_inverted_index.recognition | 13, 156 |
| abstract_inverted_index.significant | 162 |
| abstract_inverted_index.statistical | 81 |
| abstract_inverted_index.Discriminant | 93 |
| abstract_inverted_index.Matlab-ADAMS | 193 |
| abstract_inverted_index.architecture | 141 |
| abstract_inverted_index.classifiers, | 95 |
| abstract_inverted_index.hierarchical | 23 |
| abstract_inverted_index.1.09.Advanced | 112 |
| abstract_inverted_index.cosimulation. | 194 |
| abstract_inverted_index.demonstrating | 149 |
| abstract_inverted_index.effectiveness | 151 |
| abstract_inverted_index.outperforming | 107 |
| abstract_inverted_index.technologies. | 174 |
| abstract_inverted_index.Classification | 44 |
| abstract_inverted_index.Decomposition: | 46 |
| abstract_inverted_index.classification | 143 |
| abstract_inverted_index.distinguishing | 124 |
| abstract_inverted_index.rehabilitation | 173 |
| abstract_inverted_index.representation | 24 |
| abstract_inverted_index.electromyography | 10 |
| abstract_inverted_index.components.•Time | 64 |
| abstract_inverted_index.DECOMPOSITION(Maximal | 55 |
| abstract_inverted_index.features.•Classifier | 84 |
| abstract_inverted_index.classification.•Feature | 41 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile.value | 0.72331308 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |