Optimizing Situational Awareness in Disaster Response Networks Article Swipe
YOU?
·
· 2018
· Open Access
·
· DOI: https://doi.org/10.1109/access.2018.2831448
In a wireless disaster response network, how does the quality of experience (QoE) of the user affect the level of situational awareness (SA)? Is maximum QoE necessary for high SA? In this empirical study, we propose a novel measurement approach to quantify SA based on the QoE of the user. The relationship between QoE and network quality of service (QoS) metrics such as delay and packet loss is well known. Therefore, quantifying the SA-QoE-QoS relationship will help the network operator to ensure a high level of SA when the network is under load, through parsimonious allocation of network resources such as spectrum and power. We first define an objective expression for SA in four contexts: surroundings awareness, target awareness, location awareness, and responsiveness (SETLR model). Using empirical data gathered from real-world experiments, we mathematically formulate SA as a function of QoE and show that this relationship is logistic in nature. An important observation is that maximum QoE is not necessary to ensure high SA; a mean opinion score of just 2-3 is necessary in our scenario. Next, we show through simulations that this new mathematical model of SA can be instantiated in a long-term evolution radio access network and efficiently used in network optimization techniques to avoid over-provisioning of resources.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/access.2018.2831448
- OA Status
- gold
- Cited By
- 5
- References
- 35
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2802911854
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2802911854Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/access.2018.2831448Digital Object Identifier
- Title
-
Optimizing Situational Awareness in Disaster Response NetworksWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2018Year of publication
- Publication date
-
2018-01-01Full publication date if available
- Authors
-
Abdoulaye Saadou, Harsha ChenjiList of authors in order
- Landing page
-
https://doi.org/10.1109/access.2018.2831448Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1109/access.2018.2831448Direct OA link when available
- Concepts
-
Computer science, Quality of experience, Situation awareness, Quality of service, Provisioning, Wireless network, Packet loss, Computer network, Network packet, Network delay, Wireless, Telecommunications, Aerospace engineering, EngineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
5Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2023: 1, 2022: 1, 2021: 1, 2020: 1Per-year citation counts (last 5 years)
- References (count)
-
35Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2802911854 |
|---|---|
| doi | https://doi.org/10.1109/access.2018.2831448 |
| ids.doi | https://doi.org/10.1109/access.2018.2831448 |
| ids.mag | 2802911854 |
| ids.openalex | https://openalex.org/W2802911854 |
| fwci | 0.42452429 |
| type | article |
| title | Optimizing Situational Awareness in Disaster Response Networks |
| awards[0].id | https://openalex.org/G7370895821 |
| awards[0].funder_id | https://openalex.org/F4320337571 |
| awards[0].display_name | |
| awards[0].funder_award_id | 70NANB17H190 |
| awards[0].funder_display_name | Communications Technology Laboratory |
| biblio.issue | |
| biblio.volume | 6 |
| biblio.last_page | 24638 |
| biblio.first_page | 24625 |
| grants[0].funder | https://openalex.org/F4320337571 |
| grants[0].award_id | 70NANB17H190 |
| grants[0].funder_display_name | Communications Technology Laboratory |
| topics[0].id | https://openalex.org/T10579 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9986000061035156 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1705 |
| topics[0].subfield.display_name | Computer Networks and Communications |
| topics[0].display_name | Cognitive Radio Networks and Spectrum Sensing |
| topics[1].id | https://openalex.org/T11500 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.995199978351593 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2212 |
| topics[1].subfield.display_name | Ocean Engineering |
| topics[1].display_name | Evacuation and Crowd Dynamics |
| topics[2].id | https://openalex.org/T10326 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9915000200271606 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2208 |
| topics[2].subfield.display_name | Electrical and Electronic Engineering |
| topics[2].display_name | Indoor and Outdoor Localization Technologies |
| funders[0].id | https://openalex.org/F4320337571 |
| funders[0].ror | https://ror.org/015xey021 |
| funders[0].display_name | Communications Technology Laboratory |
| is_xpac | False |
| apc_list.value | 1850 |
| apc_list.currency | USD |
| apc_list.value_usd | 1850 |
| apc_paid.value | 1850 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1850 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8382854461669922 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2779333187 |
| concepts[1].level | 3 |
| concepts[1].score | 0.7698278427124023 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q3132648 |
| concepts[1].display_name | Quality of experience |
| concepts[2].id | https://openalex.org/C145804949 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7518587112426758 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q478123 |
| concepts[2].display_name | Situation awareness |
| concepts[3].id | https://openalex.org/C5119721 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5730518102645874 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q220501 |
| concepts[3].display_name | Quality of service |
| concepts[4].id | https://openalex.org/C172191483 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5689591765403748 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1071806 |
| concepts[4].display_name | Provisioning |
| concepts[5].id | https://openalex.org/C108037233 |
| concepts[5].level | 3 |
| concepts[5].score | 0.5288917422294617 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11375 |
| concepts[5].display_name | Wireless network |
| concepts[6].id | https://openalex.org/C54108766 |
| concepts[6].level | 3 |
| concepts[6].score | 0.4482366442680359 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q391064 |
| concepts[6].display_name | Packet loss |
| concepts[7].id | https://openalex.org/C31258907 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4459562301635742 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[7].display_name | Computer network |
| concepts[8].id | https://openalex.org/C158379750 |
| concepts[8].level | 2 |
| concepts[8].score | 0.43894514441490173 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q214111 |
| concepts[8].display_name | Network packet |
| concepts[9].id | https://openalex.org/C152623178 |
| concepts[9].level | 3 |
| concepts[9].score | 0.4282021224498749 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q436417 |
| concepts[9].display_name | Network delay |
| concepts[10].id | https://openalex.org/C555944384 |
| concepts[10].level | 2 |
| concepts[10].score | 0.3800572156906128 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q249 |
| concepts[10].display_name | Wireless |
| concepts[11].id | https://openalex.org/C76155785 |
| concepts[11].level | 1 |
| concepts[11].score | 0.16595062613487244 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[11].display_name | Telecommunications |
| concepts[12].id | https://openalex.org/C146978453 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q3798668 |
| concepts[12].display_name | Aerospace engineering |
| concepts[13].id | https://openalex.org/C127413603 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[13].display_name | Engineering |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8382854461669922 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/quality-of-experience |
| keywords[1].score | 0.7698278427124023 |
| keywords[1].display_name | Quality of experience |
| keywords[2].id | https://openalex.org/keywords/situation-awareness |
| keywords[2].score | 0.7518587112426758 |
| keywords[2].display_name | Situation awareness |
| keywords[3].id | https://openalex.org/keywords/quality-of-service |
| keywords[3].score | 0.5730518102645874 |
| keywords[3].display_name | Quality of service |
| keywords[4].id | https://openalex.org/keywords/provisioning |
| keywords[4].score | 0.5689591765403748 |
| keywords[4].display_name | Provisioning |
| keywords[5].id | https://openalex.org/keywords/wireless-network |
| keywords[5].score | 0.5288917422294617 |
| keywords[5].display_name | Wireless network |
| keywords[6].id | https://openalex.org/keywords/packet-loss |
| keywords[6].score | 0.4482366442680359 |
| keywords[6].display_name | Packet loss |
| keywords[7].id | https://openalex.org/keywords/computer-network |
| keywords[7].score | 0.4459562301635742 |
| keywords[7].display_name | Computer network |
| keywords[8].id | https://openalex.org/keywords/network-packet |
| keywords[8].score | 0.43894514441490173 |
| keywords[8].display_name | Network packet |
| keywords[9].id | https://openalex.org/keywords/network-delay |
| keywords[9].score | 0.4282021224498749 |
| keywords[9].display_name | Network delay |
| keywords[10].id | https://openalex.org/keywords/wireless |
| keywords[10].score | 0.3800572156906128 |
| keywords[10].display_name | Wireless |
| keywords[11].id | https://openalex.org/keywords/telecommunications |
| keywords[11].score | 0.16595062613487244 |
| keywords[11].display_name | Telecommunications |
| language | en |
| locations[0].id | doi:10.1109/access.2018.2831448 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2485537415 |
| locations[0].source.issn | 2169-3536 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2169-3536 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Access |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Access |
| locations[0].landing_page_url | https://doi.org/10.1109/access.2018.2831448 |
| locations[1].id | pmh:oai:doaj.org/article:a6603c916f3a4b528217d6ef92e13bef |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IEEE Access, Vol 6, Pp 24625-24638 (2018) |
| locations[1].landing_page_url | https://doaj.org/article/a6603c916f3a4b528217d6ef92e13bef |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5044630919 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Abdoulaye Saadou |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210106879 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Electrical Engineering and Computer Science, Ohio University, Athens, OH, USA |
| authorships[0].institutions[0].id | https://openalex.org/I4210106879 |
| authorships[0].institutions[0].ror | https://ror.org/01jr3y717 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210106879 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Ohio University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Abdoulaye Saadou |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Electrical Engineering and Computer Science, Ohio University, Athens, OH, USA |
| authorships[1].author.id | https://openalex.org/A5006259183 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3272-7020 |
| authorships[1].author.display_name | Harsha Chenji |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210106879 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Electrical Engineering and Computer Science, Ohio University, Athens, OH, USA |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I4210142152 |
| authorships[1].affiliations[1].raw_affiliation_string | ORCiD |
| authorships[1].institutions[0].id | https://openalex.org/I4210142152 |
| authorships[1].institutions[0].ror | https://ror.org/04fa4r544 |
| authorships[1].institutions[0].type | nonprofit |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210142152 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | ORCID |
| authorships[1].institutions[1].id | https://openalex.org/I4210106879 |
| authorships[1].institutions[1].ror | https://ror.org/01jr3y717 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I4210106879 |
| authorships[1].institutions[1].country_code | US |
| authorships[1].institutions[1].display_name | Ohio University |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Harsha Chenji |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | ORCiD, School of Electrical Engineering and Computer Science, Ohio University, Athens, OH, USA |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1109/access.2018.2831448 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Optimizing Situational Awareness in Disaster Response Networks |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10579 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9986000061035156 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1705 |
| primary_topic.subfield.display_name | Computer Networks and Communications |
| primary_topic.display_name | Cognitive Radio Networks and Spectrum Sensing |
| related_works | https://openalex.org/W2561422065, https://openalex.org/W3172541277, https://openalex.org/W3031398062, https://openalex.org/W3134457781, https://openalex.org/W2025664220, https://openalex.org/W2954030096, https://openalex.org/W2954564389, https://openalex.org/W2140627792, https://openalex.org/W4323645795, https://openalex.org/W4286229618 |
| cited_by_count | 5 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2022 |
| counts_by_year[2].cited_by_count | 1 |
| counts_by_year[3].year | 2021 |
| counts_by_year[3].cited_by_count | 1 |
| counts_by_year[4].year | 2020 |
| counts_by_year[4].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1109/access.2018.2831448 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2485537415 |
| best_oa_location.source.issn | 2169-3536 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2169-3536 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Access |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Access |
| best_oa_location.landing_page_url | https://doi.org/10.1109/access.2018.2831448 |
| primary_location.id | doi:10.1109/access.2018.2831448 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2485537415 |
| primary_location.source.issn | 2169-3536 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2169-3536 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Access |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Access |
| primary_location.landing_page_url | https://doi.org/10.1109/access.2018.2831448 |
| publication_date | 2018-01-01 |
| publication_year | 2018 |
| referenced_works | https://openalex.org/W1983373936, https://openalex.org/W2013679316, https://openalex.org/W2104345001, https://openalex.org/W2029173882, https://openalex.org/W6683834441, https://openalex.org/W2076699152, https://openalex.org/W6668106945, https://openalex.org/W2040823429, https://openalex.org/W1994021712, https://openalex.org/W2314617915, https://openalex.org/W1964849974, https://openalex.org/W2003300686, https://openalex.org/W6681986748, https://openalex.org/W6625827158, https://openalex.org/W2041651787, https://openalex.org/W2182030174, https://openalex.org/W1513438671, https://openalex.org/W2212242269, https://openalex.org/W4212953210, https://openalex.org/W2022359415, https://openalex.org/W2110017066, https://openalex.org/W2772359539, https://openalex.org/W1607790321, https://openalex.org/W2150889340, https://openalex.org/W2165723722, https://openalex.org/W2046814972, https://openalex.org/W2057140073, https://openalex.org/W2280565304, https://openalex.org/W2151905266, https://openalex.org/W3022996584, https://openalex.org/W2072645635, https://openalex.org/W2145562413, https://openalex.org/W2162147932, https://openalex.org/W985826516, https://openalex.org/W2070888931 |
| referenced_works_count | 35 |
| abstract_inverted_index.a | 1, 36, 82, 137, 164, 192 |
| abstract_inverted_index.An | 150 |
| abstract_inverted_index.In | 0, 30 |
| abstract_inverted_index.Is | 23 |
| abstract_inverted_index.SA | 42, 86, 111, 135, 187 |
| abstract_inverted_index.We | 104 |
| abstract_inverted_index.an | 107 |
| abstract_inverted_index.as | 62, 100, 136 |
| abstract_inverted_index.be | 189 |
| abstract_inverted_index.in | 112, 148, 173, 191, 201 |
| abstract_inverted_index.is | 67, 90, 146, 153, 157, 171 |
| abstract_inverted_index.of | 10, 13, 19, 47, 57, 85, 96, 139, 168, 186, 208 |
| abstract_inverted_index.on | 44 |
| abstract_inverted_index.to | 40, 80, 160, 205 |
| abstract_inverted_index.we | 34, 132, 177 |
| abstract_inverted_index.2-3 | 170 |
| abstract_inverted_index.QoE | 25, 46, 53, 140, 156 |
| abstract_inverted_index.SA; | 163 |
| abstract_inverted_index.SA? | 29 |
| abstract_inverted_index.The | 50 |
| abstract_inverted_index.and | 54, 64, 102, 121, 141, 198 |
| abstract_inverted_index.can | 188 |
| abstract_inverted_index.for | 27, 110 |
| abstract_inverted_index.how | 6 |
| abstract_inverted_index.new | 183 |
| abstract_inverted_index.not | 158 |
| abstract_inverted_index.our | 174 |
| abstract_inverted_index.the | 8, 14, 17, 45, 48, 72, 77, 88 |
| abstract_inverted_index.data | 127 |
| abstract_inverted_index.does | 7 |
| abstract_inverted_index.four | 113 |
| abstract_inverted_index.from | 129 |
| abstract_inverted_index.help | 76 |
| abstract_inverted_index.high | 28, 83, 162 |
| abstract_inverted_index.just | 169 |
| abstract_inverted_index.loss | 66 |
| abstract_inverted_index.mean | 165 |
| abstract_inverted_index.show | 142, 178 |
| abstract_inverted_index.such | 61, 99 |
| abstract_inverted_index.that | 143, 154, 181 |
| abstract_inverted_index.this | 31, 144, 182 |
| abstract_inverted_index.used | 200 |
| abstract_inverted_index.user | 15 |
| abstract_inverted_index.well | 68 |
| abstract_inverted_index.when | 87 |
| abstract_inverted_index.will | 75 |
| abstract_inverted_index.(QoE) | 12 |
| abstract_inverted_index.(QoS) | 59 |
| abstract_inverted_index.(SA)? | 22 |
| abstract_inverted_index.Next, | 176 |
| abstract_inverted_index.Using | 125 |
| abstract_inverted_index.avoid | 206 |
| abstract_inverted_index.based | 43 |
| abstract_inverted_index.delay | 63 |
| abstract_inverted_index.first | 105 |
| abstract_inverted_index.level | 18, 84 |
| abstract_inverted_index.load, | 92 |
| abstract_inverted_index.model | 185 |
| abstract_inverted_index.novel | 37 |
| abstract_inverted_index.radio | 195 |
| abstract_inverted_index.score | 167 |
| abstract_inverted_index.under | 91 |
| abstract_inverted_index.user. | 49 |
| abstract_inverted_index.(SETLR | 123 |
| abstract_inverted_index.access | 196 |
| abstract_inverted_index.affect | 16 |
| abstract_inverted_index.define | 106 |
| abstract_inverted_index.ensure | 81, 161 |
| abstract_inverted_index.known. | 69 |
| abstract_inverted_index.packet | 65 |
| abstract_inverted_index.power. | 103 |
| abstract_inverted_index.study, | 33 |
| abstract_inverted_index.target | 117 |
| abstract_inverted_index.between | 52 |
| abstract_inverted_index.maximum | 24, 155 |
| abstract_inverted_index.metrics | 60 |
| abstract_inverted_index.model). | 124 |
| abstract_inverted_index.nature. | 149 |
| abstract_inverted_index.network | 55, 78, 89, 97, 197, 202 |
| abstract_inverted_index.opinion | 166 |
| abstract_inverted_index.propose | 35 |
| abstract_inverted_index.quality | 9, 56 |
| abstract_inverted_index.service | 58 |
| abstract_inverted_index.through | 93, 179 |
| abstract_inverted_index.approach | 39 |
| abstract_inverted_index.disaster | 3 |
| abstract_inverted_index.function | 138 |
| abstract_inverted_index.gathered | 128 |
| abstract_inverted_index.location | 119 |
| abstract_inverted_index.logistic | 147 |
| abstract_inverted_index.network, | 5 |
| abstract_inverted_index.operator | 79 |
| abstract_inverted_index.quantify | 41 |
| abstract_inverted_index.response | 4 |
| abstract_inverted_index.spectrum | 101 |
| abstract_inverted_index.wireless | 2 |
| abstract_inverted_index.awareness | 21 |
| abstract_inverted_index.contexts: | 114 |
| abstract_inverted_index.empirical | 32, 126 |
| abstract_inverted_index.evolution | 194 |
| abstract_inverted_index.formulate | 134 |
| abstract_inverted_index.important | 151 |
| abstract_inverted_index.long-term | 193 |
| abstract_inverted_index.necessary | 26, 159, 172 |
| abstract_inverted_index.objective | 108 |
| abstract_inverted_index.resources | 98 |
| abstract_inverted_index.scenario. | 175 |
| abstract_inverted_index.SA-QoE-QoS | 73 |
| abstract_inverted_index.Therefore, | 70 |
| abstract_inverted_index.allocation | 95 |
| abstract_inverted_index.awareness, | 116, 118, 120 |
| abstract_inverted_index.experience | 11 |
| abstract_inverted_index.expression | 109 |
| abstract_inverted_index.real-world | 130 |
| abstract_inverted_index.resources. | 209 |
| abstract_inverted_index.techniques | 204 |
| abstract_inverted_index.efficiently | 199 |
| abstract_inverted_index.measurement | 38 |
| abstract_inverted_index.observation | 152 |
| abstract_inverted_index.quantifying | 71 |
| abstract_inverted_index.simulations | 180 |
| abstract_inverted_index.situational | 20 |
| abstract_inverted_index.experiments, | 131 |
| abstract_inverted_index.instantiated | 190 |
| abstract_inverted_index.mathematical | 184 |
| abstract_inverted_index.optimization | 203 |
| abstract_inverted_index.parsimonious | 94 |
| abstract_inverted_index.relationship | 51, 74, 145 |
| abstract_inverted_index.surroundings | 115 |
| abstract_inverted_index.mathematically | 133 |
| abstract_inverted_index.responsiveness | 122 |
| abstract_inverted_index.over-provisioning | 207 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/13 |
| sustainable_development_goals[0].score | 0.8100000023841858 |
| sustainable_development_goals[0].display_name | Climate action |
| citation_normalized_percentile.value | 0.63157733 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |