Optimizing the Controlling Parameters of a Biomass Boiler Based on Big Data Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.3390/en16237783
This paper presents a comprehensive method for optimizing the controlling parameters of a biomass boiler. The historical data are preprocessed and classified into different conditions with the k-means clustering algorithm. The first-order derivative (FOD) method is used to compensate for the lag of controlling parameters, the backpropagation (BP) neural network is used to map the controlling parameters with the boiler efficiency and unit load, and the ant colony optimization (ACO) algorithm is used to search the opening of air dampers. The results of the FOD-BP-ACO model show an improvement in the boiler efficiency compared to the predicted values of FOD-BP and the data compared to the historical true values were observed. The results suggest that this FOD-BP-ACO method can also be used to search and optimize other controlling parameters.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/en16237783
- https://www.mdpi.com/1996-1073/16/23/7783/pdf?version=1701048254
- OA Status
- gold
- Cited By
- 2
- References
- 18
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4389056724
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4389056724Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/en16237783Digital Object Identifier
- Title
-
Optimizing the Controlling Parameters of a Biomass Boiler Based on Big DataWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-11-27Full publication date if available
- Authors
-
Jiaxin He, Junjiao Zhang, L. Wang, Xiaoying Hu, Junjie Xue, Ying Zhao, Xiaoqiang Wang, Changqing DongList of authors in order
- Landing page
-
https://doi.org/10.3390/en16237783Publisher landing page
- PDF URL
-
https://www.mdpi.com/1996-1073/16/23/7783/pdf?version=1701048254Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/1996-1073/16/23/7783/pdf?version=1701048254Direct OA link when available
- Concepts
-
Backpropagation, Artificial neural network, Boiler (water heating), Ant colony optimization algorithms, Cluster analysis, Engineering, Data mining, Computer science, Artificial intelligence, Waste managementTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2Per-year citation counts (last 5 years)
- References (count)
-
18Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4389056724 |
|---|---|
| doi | https://doi.org/10.3390/en16237783 |
| ids.doi | https://doi.org/10.3390/en16237783 |
| ids.openalex | https://openalex.org/W4389056724 |
| fwci | 0.3317678 |
| type | article |
| title | Optimizing the Controlling Parameters of a Biomass Boiler Based on Big Data |
| biblio.issue | 23 |
| biblio.volume | 16 |
| biblio.last_page | 7783 |
| biblio.first_page | 7783 |
| topics[0].id | https://openalex.org/T11052 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9896000027656555 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Energy Load and Power Forecasting |
| topics[1].id | https://openalex.org/T13717 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9843000173568726 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2207 |
| topics[1].subfield.display_name | Control and Systems Engineering |
| topics[1].display_name | Advanced Algorithms and Applications |
| topics[2].id | https://openalex.org/T14444 |
| topics[2].field.id | https://openalex.org/fields/21 |
| topics[2].field.display_name | Energy |
| topics[2].score | 0.984000027179718 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2102 |
| topics[2].subfield.display_name | Energy Engineering and Power Technology |
| topics[2].display_name | Power Systems and Renewable Energy |
| is_xpac | False |
| apc_list.value | 2200 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2382 |
| apc_paid.value | 2200 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2382 |
| concepts[0].id | https://openalex.org/C155032097 |
| concepts[0].level | 3 |
| concepts[0].score | 0.6494735479354858 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q798503 |
| concepts[0].display_name | Backpropagation |
| concepts[1].id | https://openalex.org/C50644808 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6441488265991211 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[1].display_name | Artificial neural network |
| concepts[2].id | https://openalex.org/C2780013297 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6193127632141113 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q19596153 |
| concepts[2].display_name | Boiler (water heating) |
| concepts[3].id | https://openalex.org/C40128228 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5924310684204102 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q460851 |
| concepts[3].display_name | Ant colony optimization algorithms |
| concepts[4].id | https://openalex.org/C73555534 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5438282489776611 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q622825 |
| concepts[4].display_name | Cluster analysis |
| concepts[5].id | https://openalex.org/C127413603 |
| concepts[5].level | 0 |
| concepts[5].score | 0.4752112329006195 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[5].display_name | Engineering |
| concepts[6].id | https://openalex.org/C124101348 |
| concepts[6].level | 1 |
| concepts[6].score | 0.37022852897644043 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[6].display_name | Data mining |
| concepts[7].id | https://openalex.org/C41008148 |
| concepts[7].level | 0 |
| concepts[7].score | 0.3688008189201355 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[7].display_name | Computer science |
| concepts[8].id | https://openalex.org/C154945302 |
| concepts[8].level | 1 |
| concepts[8].score | 0.28078794479370117 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[8].display_name | Artificial intelligence |
| concepts[9].id | https://openalex.org/C548081761 |
| concepts[9].level | 1 |
| concepts[9].score | 0.09912872314453125 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q180388 |
| concepts[9].display_name | Waste management |
| keywords[0].id | https://openalex.org/keywords/backpropagation |
| keywords[0].score | 0.6494735479354858 |
| keywords[0].display_name | Backpropagation |
| keywords[1].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[1].score | 0.6441488265991211 |
| keywords[1].display_name | Artificial neural network |
| keywords[2].id | https://openalex.org/keywords/boiler |
| keywords[2].score | 0.6193127632141113 |
| keywords[2].display_name | Boiler (water heating) |
| keywords[3].id | https://openalex.org/keywords/ant-colony-optimization-algorithms |
| keywords[3].score | 0.5924310684204102 |
| keywords[3].display_name | Ant colony optimization algorithms |
| keywords[4].id | https://openalex.org/keywords/cluster-analysis |
| keywords[4].score | 0.5438282489776611 |
| keywords[4].display_name | Cluster analysis |
| keywords[5].id | https://openalex.org/keywords/engineering |
| keywords[5].score | 0.4752112329006195 |
| keywords[5].display_name | Engineering |
| keywords[6].id | https://openalex.org/keywords/data-mining |
| keywords[6].score | 0.37022852897644043 |
| keywords[6].display_name | Data mining |
| keywords[7].id | https://openalex.org/keywords/computer-science |
| keywords[7].score | 0.3688008189201355 |
| keywords[7].display_name | Computer science |
| keywords[8].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[8].score | 0.28078794479370117 |
| keywords[8].display_name | Artificial intelligence |
| keywords[9].id | https://openalex.org/keywords/waste-management |
| keywords[9].score | 0.09912872314453125 |
| keywords[9].display_name | Waste management |
| language | en |
| locations[0].id | doi:10.3390/en16237783 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S198098182 |
| locations[0].source.issn | 1996-1073 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1996-1073 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Energies |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/1996-1073/16/23/7783/pdf?version=1701048254 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Energies |
| locations[0].landing_page_url | https://doi.org/10.3390/en16237783 |
| locations[1].id | pmh:oai:doaj.org/article:5a4c2808858d47fc826249f32a32aaa6 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Energies, Vol 16, Iss 23, p 7783 (2023) |
| locations[1].landing_page_url | https://doaj.org/article/5a4c2808858d47fc826249f32a32aaa6 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5101764424 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6157-8525 |
| authorships[0].author.display_name | Jiaxin He |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I153473198 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China |
| authorships[0].institutions[0].id | https://openalex.org/I153473198 |
| authorships[0].institutions[0].ror | https://ror.org/04qr5t414 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I153473198 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | North China Electric Power University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jiaxin He |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China |
| authorships[1].author.id | https://openalex.org/A5115588914 |
| authorships[1].author.orcid | https://orcid.org/0009-0005-2569-1359 |
| authorships[1].author.display_name | Junjiao Zhang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I153473198 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China |
| authorships[1].institutions[0].id | https://openalex.org/I153473198 |
| authorships[1].institutions[0].ror | https://ror.org/04qr5t414 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I153473198 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | North China Electric Power University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Junjiao Zhang |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China |
| authorships[2].author.id | https://openalex.org/A5049011112 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | L. Wang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I153473198 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China |
| authorships[2].institutions[0].id | https://openalex.org/I153473198 |
| authorships[2].institutions[0].ror | https://ror.org/04qr5t414 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I153473198 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | North China Electric Power University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Lezhong Wang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China |
| authorships[3].author.id | https://openalex.org/A5016312685 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1754-6697 |
| authorships[3].author.display_name | Xiaoying Hu |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I153473198 |
| authorships[3].affiliations[0].raw_affiliation_string | School of New Energy, North China Electric Power University, Beijing 102206, China |
| authorships[3].institutions[0].id | https://openalex.org/I153473198 |
| authorships[3].institutions[0].ror | https://ror.org/04qr5t414 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I153473198 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | North China Electric Power University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Xiaoying Hu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of New Energy, North China Electric Power University, Beijing 102206, China |
| authorships[4].author.id | https://openalex.org/A5101584140 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-3467-7883 |
| authorships[4].author.display_name | Junjie Xue |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I153473198 |
| authorships[4].affiliations[0].raw_affiliation_string | School of New Energy, North China Electric Power University, Beijing 102206, China |
| authorships[4].institutions[0].id | https://openalex.org/I153473198 |
| authorships[4].institutions[0].ror | https://ror.org/04qr5t414 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I153473198 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | North China Electric Power University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Junjie Xue |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | School of New Energy, North China Electric Power University, Beijing 102206, China |
| authorships[5].author.id | https://openalex.org/A5101886630 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-5952-9705 |
| authorships[5].author.display_name | Ying Zhao |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I153473198 |
| authorships[5].affiliations[0].raw_affiliation_string | School of New Energy, North China Electric Power University, Beijing 102206, China |
| authorships[5].institutions[0].id | https://openalex.org/I153473198 |
| authorships[5].institutions[0].ror | https://ror.org/04qr5t414 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I153473198 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | North China Electric Power University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Ying Zhao |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | School of New Energy, North China Electric Power University, Beijing 102206, China |
| authorships[6].author.id | https://openalex.org/A5100626804 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-2002-4117 |
| authorships[6].author.display_name | Xiaoqiang Wang |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I153473198 |
| authorships[6].affiliations[0].raw_affiliation_string | School of New Energy, North China Electric Power University, Beijing 102206, China |
| authorships[6].institutions[0].id | https://openalex.org/I153473198 |
| authorships[6].institutions[0].ror | https://ror.org/04qr5t414 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I153473198 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | North China Electric Power University |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Xiaoqiang Wang |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | School of New Energy, North China Electric Power University, Beijing 102206, China |
| authorships[7].author.id | https://openalex.org/A5100319440 |
| authorships[7].author.orcid | https://orcid.org/0000-0001-6559-7889 |
| authorships[7].author.display_name | Changqing Dong |
| authorships[7].countries | CN |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I153473198 |
| authorships[7].affiliations[0].raw_affiliation_string | School of New Energy, North China Electric Power University, Beijing 102206, China |
| authorships[7].institutions[0].id | https://openalex.org/I153473198 |
| authorships[7].institutions[0].ror | https://ror.org/04qr5t414 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I153473198 |
| authorships[7].institutions[0].country_code | CN |
| authorships[7].institutions[0].display_name | North China Electric Power University |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Changqing Dong |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | School of New Energy, North China Electric Power University, Beijing 102206, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/1996-1073/16/23/7783/pdf?version=1701048254 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Optimizing the Controlling Parameters of a Biomass Boiler Based on Big Data |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11052 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9896000027656555 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Energy Load and Power Forecasting |
| related_works | https://openalex.org/W4239286941, https://openalex.org/W2088845016, https://openalex.org/W589102260, https://openalex.org/W1966421350, https://openalex.org/W1868434454, https://openalex.org/W2894173309, https://openalex.org/W4387932263, https://openalex.org/W2157746493, https://openalex.org/W2371065793, https://openalex.org/W1977222966 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3390/en16237783 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S198098182 |
| best_oa_location.source.issn | 1996-1073 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1996-1073 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Energies |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/1996-1073/16/23/7783/pdf?version=1701048254 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Energies |
| best_oa_location.landing_page_url | https://doi.org/10.3390/en16237783 |
| primary_location.id | doi:10.3390/en16237783 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S198098182 |
| primary_location.source.issn | 1996-1073 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1996-1073 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Energies |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/1996-1073/16/23/7783/pdf?version=1701048254 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Energies |
| primary_location.landing_page_url | https://doi.org/10.3390/en16237783 |
| publication_date | 2023-11-27 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2040511194, https://openalex.org/W260467751, https://openalex.org/W2210115971, https://openalex.org/W4310249177, https://openalex.org/W4328143249, https://openalex.org/W4387842017, https://openalex.org/W4226323522, https://openalex.org/W3185821973, https://openalex.org/W4293558809, https://openalex.org/W2073849744, https://openalex.org/W2891253356, https://openalex.org/W3033188861, https://openalex.org/W3135477757, https://openalex.org/W2135931458, https://openalex.org/W2911964244, https://openalex.org/W4290851441, https://openalex.org/W2154929945, https://openalex.org/W2061438946 |
| referenced_works_count | 18 |
| abstract_inverted_index.a | 3, 12 |
| abstract_inverted_index.an | 87 |
| abstract_inverted_index.be | 120 |
| abstract_inverted_index.in | 89 |
| abstract_inverted_index.is | 35, 50, 71 |
| abstract_inverted_index.of | 11, 42, 77, 82, 98 |
| abstract_inverted_index.to | 37, 52, 73, 94, 104, 122 |
| abstract_inverted_index.The | 15, 30, 80, 111 |
| abstract_inverted_index.air | 78 |
| abstract_inverted_index.and | 20, 61, 64, 100, 124 |
| abstract_inverted_index.ant | 66 |
| abstract_inverted_index.are | 18 |
| abstract_inverted_index.can | 118 |
| abstract_inverted_index.for | 6, 39 |
| abstract_inverted_index.lag | 41 |
| abstract_inverted_index.map | 53 |
| abstract_inverted_index.the | 8, 26, 40, 45, 54, 58, 65, 75, 83, 90, 95, 101, 105 |
| abstract_inverted_index.(BP) | 47 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.also | 119 |
| abstract_inverted_index.data | 17, 102 |
| abstract_inverted_index.into | 22 |
| abstract_inverted_index.show | 86 |
| abstract_inverted_index.that | 114 |
| abstract_inverted_index.this | 115 |
| abstract_inverted_index.true | 107 |
| abstract_inverted_index.unit | 62 |
| abstract_inverted_index.used | 36, 51, 72, 121 |
| abstract_inverted_index.were | 109 |
| abstract_inverted_index.with | 25, 57 |
| abstract_inverted_index.(ACO) | 69 |
| abstract_inverted_index.(FOD) | 33 |
| abstract_inverted_index.load, | 63 |
| abstract_inverted_index.model | 85 |
| abstract_inverted_index.other | 126 |
| abstract_inverted_index.paper | 1 |
| abstract_inverted_index.FOD-BP | 99 |
| abstract_inverted_index.boiler | 59, 91 |
| abstract_inverted_index.colony | 67 |
| abstract_inverted_index.method | 5, 34, 117 |
| abstract_inverted_index.neural | 48 |
| abstract_inverted_index.search | 74, 123 |
| abstract_inverted_index.values | 97, 108 |
| abstract_inverted_index.biomass | 13 |
| abstract_inverted_index.boiler. | 14 |
| abstract_inverted_index.k-means | 27 |
| abstract_inverted_index.network | 49 |
| abstract_inverted_index.opening | 76 |
| abstract_inverted_index.results | 81, 112 |
| abstract_inverted_index.suggest | 113 |
| abstract_inverted_index.compared | 93, 103 |
| abstract_inverted_index.dampers. | 79 |
| abstract_inverted_index.optimize | 125 |
| abstract_inverted_index.presents | 2 |
| abstract_inverted_index.algorithm | 70 |
| abstract_inverted_index.different | 23 |
| abstract_inverted_index.observed. | 110 |
| abstract_inverted_index.predicted | 96 |
| abstract_inverted_index.FOD-BP-ACO | 84, 116 |
| abstract_inverted_index.algorithm. | 29 |
| abstract_inverted_index.classified | 21 |
| abstract_inverted_index.clustering | 28 |
| abstract_inverted_index.compensate | 38 |
| abstract_inverted_index.conditions | 24 |
| abstract_inverted_index.derivative | 32 |
| abstract_inverted_index.efficiency | 60, 92 |
| abstract_inverted_index.historical | 16, 106 |
| abstract_inverted_index.optimizing | 7 |
| abstract_inverted_index.parameters | 10, 56 |
| abstract_inverted_index.controlling | 9, 43, 55, 127 |
| abstract_inverted_index.first-order | 31 |
| abstract_inverted_index.improvement | 88 |
| abstract_inverted_index.parameters, | 44 |
| abstract_inverted_index.parameters. | 128 |
| abstract_inverted_index.optimization | 68 |
| abstract_inverted_index.preprocessed | 19 |
| abstract_inverted_index.comprehensive | 4 |
| abstract_inverted_index.backpropagation | 46 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 95 |
| corresponding_author_ids | https://openalex.org/A5115588914 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 8 |
| corresponding_institution_ids | https://openalex.org/I153473198 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.7200000286102295 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile.value | 0.59078006 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |