Optimizing the Experimental Method for Stomata-Profiling Automation of Soybean Leaves Based on Deep Learning Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.3390/plants10122714
Stomatal observation and automatic stomatal detection are useful analyses of stomata for taxonomic, biological, physiological, and eco-physiological studies. We present a new clearing method for improved microscopic imaging of stomata in soybean followed by automated stomatal detection by deep learning. We tested eight clearing agent formulations based upon different ethanol and sodium hypochlorite (NaOCl) concentrations in order to improve the transparency in leaves. An optimal formulation—a 1:1 (v/v) mixture of 95% ethanol and NaOCl (6–14%)—produced better quality images of soybean stomata. Additionally, we evaluated fixatives and dehydrating agents and selected absolute ethanol for both fixation and dehydration. This is a good substitute for formaldehyde, which is more toxic to handle. Using imaging data from this clearing method, we developed an automatic stomatal detector using deep learning and improved a deep-learning algorithm that automatically analyzes stomata through an object detection model using YOLO. The YOLO deep-learning model successfully recognized stomata with high mAP (~0.99). A web-based interface is provided to apply the model of stomatal detection for any soybean data that makes use of the new clearing protocol.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/plants10122714
- https://www.mdpi.com/2223-7747/10/12/2714/pdf?version=1639134455
- OA Status
- gold
- Cited By
- 11
- References
- 46
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4200254186
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4200254186Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/plants10122714Digital Object Identifier
- Title
-
Optimizing the Experimental Method for Stomata-Profiling Automation of Soybean Leaves Based on Deep LearningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-12-10Full publication date if available
- Authors
-
Syada Nizer Sultana, Halim Park, Sung Hoon Choi, Hyun Jo, Jong Tae Song, Jeong‐Dong Lee, Yang Jae KangList of authors in order
- Landing page
-
https://doi.org/10.3390/plants10122714Publisher landing page
- PDF URL
-
https://www.mdpi.com/2223-7747/10/12/2714/pdf?version=1639134455Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2223-7747/10/12/2714/pdf?version=1639134455Direct OA link when available
- Concepts
-
Artificial intelligence, Deep learning, Computer science, Chemistry, Machine learning, Biological system, BiologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
11Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 4, 2024: 5, 2023: 1, 2022: 1Per-year citation counts (last 5 years)
- References (count)
-
46Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4200254186 |
|---|---|
| doi | https://doi.org/10.3390/plants10122714 |
| ids.doi | https://doi.org/10.3390/plants10122714 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/34961184 |
| ids.openalex | https://openalex.org/W4200254186 |
| fwci | 1.09492093 |
| type | article |
| title | Optimizing the Experimental Method for Stomata-Profiling Automation of Soybean Leaves Based on Deep Learning |
| awards[0].id | https://openalex.org/G663055890 |
| awards[0].funder_id | https://openalex.org/F4320322035 |
| awards[0].display_name | |
| awards[0].funder_award_id | PJ01416803 |
| awards[0].funder_display_name | Rural Development Administration |
| biblio.issue | 12 |
| biblio.volume | 10 |
| biblio.last_page | 2714 |
| biblio.first_page | 2714 |
| topics[0].id | https://openalex.org/T10616 |
| topics[0].field.id | https://openalex.org/fields/11 |
| topics[0].field.display_name | Agricultural and Biological Sciences |
| topics[0].score | 0.9984999895095825 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1110 |
| topics[0].subfield.display_name | Plant Science |
| topics[0].display_name | Smart Agriculture and AI |
| topics[1].id | https://openalex.org/T14365 |
| topics[1].field.id | https://openalex.org/fields/11 |
| topics[1].field.display_name | Agricultural and Biological Sciences |
| topics[1].score | 0.9818000197410583 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1110 |
| topics[1].subfield.display_name | Plant Science |
| topics[1].display_name | Leaf Properties and Growth Measurement |
| topics[2].id | https://openalex.org/T12795 |
| topics[2].field.id | https://openalex.org/fields/11 |
| topics[2].field.display_name | Agricultural and Biological Sciences |
| topics[2].score | 0.9624000191688538 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1110 |
| topics[2].subfield.display_name | Plant Science |
| topics[2].display_name | Banana Cultivation and Research |
| funders[0].id | https://openalex.org/F4320322035 |
| funders[0].ror | https://ror.org/03xs9yg50 |
| funders[0].display_name | Rural Development Administration |
| is_xpac | False |
| apc_list.value | 2200 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2382 |
| apc_paid.value | 2200 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2382 |
| concepts[0].id | https://openalex.org/C154945302 |
| concepts[0].level | 1 |
| concepts[0].score | 0.5696551203727722 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[0].display_name | Artificial intelligence |
| concepts[1].id | https://openalex.org/C108583219 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5638390779495239 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[1].display_name | Deep learning |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.41203033924102783 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C185592680 |
| concepts[3].level | 0 |
| concepts[3].score | 0.397577702999115 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[3].display_name | Chemistry |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3856690526008606 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| concepts[5].id | https://openalex.org/C186060115 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3375629782676697 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q30336093 |
| concepts[5].display_name | Biological system |
| concepts[6].id | https://openalex.org/C86803240 |
| concepts[6].level | 0 |
| concepts[6].score | 0.2112712264060974 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[6].display_name | Biology |
| keywords[0].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[0].score | 0.5696551203727722 |
| keywords[0].display_name | Artificial intelligence |
| keywords[1].id | https://openalex.org/keywords/deep-learning |
| keywords[1].score | 0.5638390779495239 |
| keywords[1].display_name | Deep learning |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.41203033924102783 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/chemistry |
| keywords[3].score | 0.397577702999115 |
| keywords[3].display_name | Chemistry |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.3856690526008606 |
| keywords[4].display_name | Machine learning |
| keywords[5].id | https://openalex.org/keywords/biological-system |
| keywords[5].score | 0.3375629782676697 |
| keywords[5].display_name | Biological system |
| keywords[6].id | https://openalex.org/keywords/biology |
| keywords[6].score | 0.2112712264060974 |
| keywords[6].display_name | Biology |
| language | en |
| locations[0].id | doi:10.3390/plants10122714 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210230202 |
| locations[0].source.issn | 2223-7747 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2223-7747 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Plants |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2223-7747/10/12/2714/pdf?version=1639134455 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Plants |
| locations[0].landing_page_url | https://doi.org/10.3390/plants10122714 |
| locations[1].id | pmid:34961184 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Plants (Basel, Switzerland) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/34961184 |
| locations[2].id | pmh:oai:doaj.org/article:40da4561b6eb4e30ba0b7c3dd85a0c81 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | cc-by-sa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Plants, Vol 10, Iss 12, p 2714 (2021) |
| locations[2].landing_page_url | https://doaj.org/article/40da4561b6eb4e30ba0b7c3dd85a0c81 |
| locations[3].id | pmh:oai:mdpi.com:/2223-7747/10/12/2714/ |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400947 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | True |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | MDPI (MDPI AG) |
| locations[3].source.host_organization | https://openalex.org/I4210097602 |
| locations[3].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[3].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[3].license | cc-by |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/cc-by |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Plants; Volume 10; Issue 12; Pages: 2714 |
| locations[3].landing_page_url | https://dx.doi.org/10.3390/plants10122714 |
| locations[4].id | pmh:oai:pubmedcentral.nih.gov:8708663 |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S2764455111 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | False |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | PubMed Central |
| locations[4].source.host_organization | https://openalex.org/I1299303238 |
| locations[4].source.host_organization_name | National Institutes of Health |
| locations[4].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[4].license | other-oa |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | Text |
| locations[4].license_id | https://openalex.org/licenses/other-oa |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | Plants (Basel) |
| locations[4].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/8708663 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5013960480 |
| authorships[0].author.orcid | https://orcid.org/0009-0007-3178-1988 |
| authorships[0].author.display_name | Syada Nizer Sultana |
| authorships[0].countries | KR |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I31419693 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea |
| authorships[0].institutions[0].id | https://openalex.org/I31419693 |
| authorships[0].institutions[0].ror | https://ror.org/040c17130 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I31419693 |
| authorships[0].institutions[0].country_code | KR |
| authorships[0].institutions[0].display_name | Kyungpook National University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Syada Nizer Sultana |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea |
| authorships[1].author.id | https://openalex.org/A5064457490 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Halim Park |
| authorships[1].countries | KR |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I189442560 |
| authorships[1].affiliations[0].raw_affiliation_string | Division of Bio & Medical Big Data Department (BK4 Program), Gyeongsang National University, Jinju 52828, Korea |
| authorships[1].institutions[0].id | https://openalex.org/I189442560 |
| authorships[1].institutions[0].ror | https://ror.org/00saywf64 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I189442560 |
| authorships[1].institutions[0].country_code | KR |
| authorships[1].institutions[0].display_name | Gyeongsang National University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Halim Park |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Division of Bio & Medical Big Data Department (BK4 Program), Gyeongsang National University, Jinju 52828, Korea |
| authorships[2].author.id | https://openalex.org/A5020141437 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-3328-2043 |
| authorships[2].author.display_name | Sung Hoon Choi |
| authorships[2].countries | KR |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I189442560 |
| authorships[2].affiliations[0].raw_affiliation_string | Division of Bio & Medical Big Data Department (BK4 Program), Gyeongsang National University, Jinju 52828, Korea |
| authorships[2].institutions[0].id | https://openalex.org/I189442560 |
| authorships[2].institutions[0].ror | https://ror.org/00saywf64 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I189442560 |
| authorships[2].institutions[0].country_code | KR |
| authorships[2].institutions[0].display_name | Gyeongsang National University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Sung Hoon Choi |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Division of Bio & Medical Big Data Department (BK4 Program), Gyeongsang National University, Jinju 52828, Korea |
| authorships[3].author.id | https://openalex.org/A5057584863 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-2741-4049 |
| authorships[3].author.display_name | Hyun Jo |
| authorships[3].countries | KR |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I31419693 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea |
| authorships[3].institutions[0].id | https://openalex.org/I31419693 |
| authorships[3].institutions[0].ror | https://ror.org/040c17130 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I31419693 |
| authorships[3].institutions[0].country_code | KR |
| authorships[3].institutions[0].display_name | Kyungpook National University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Hyun Jo |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea |
| authorships[4].author.id | https://openalex.org/A5101498213 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-2052-6582 |
| authorships[4].author.display_name | Jong Tae Song |
| authorships[4].countries | KR |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I31419693 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea |
| authorships[4].institutions[0].id | https://openalex.org/I31419693 |
| authorships[4].institutions[0].ror | https://ror.org/040c17130 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I31419693 |
| authorships[4].institutions[0].country_code | KR |
| authorships[4].institutions[0].display_name | Kyungpook National University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Jong Tae Song |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea |
| authorships[5].author.id | https://openalex.org/A5091261738 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-3474-0384 |
| authorships[5].author.display_name | Jeong‐Dong Lee |
| authorships[5].countries | KR |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I31419693 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Integrative Biology, Kyungpook National University, Daegu 41566, Korea |
| authorships[5].affiliations[1].institution_ids | https://openalex.org/I31419693 |
| authorships[5].affiliations[1].raw_affiliation_string | Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea |
| authorships[5].institutions[0].id | https://openalex.org/I31419693 |
| authorships[5].institutions[0].ror | https://ror.org/040c17130 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I31419693 |
| authorships[5].institutions[0].country_code | KR |
| authorships[5].institutions[0].display_name | Kyungpook National University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Jeong-Dong Lee |
| authorships[5].is_corresponding | True |
| authorships[5].raw_affiliation_strings | Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea, Department of Integrative Biology, Kyungpook National University, Daegu 41566, Korea |
| authorships[6].author.id | https://openalex.org/A5085827645 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-4313-7088 |
| authorships[6].author.display_name | Yang Jae Kang |
| authorships[6].countries | KR |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I189442560 |
| authorships[6].affiliations[0].raw_affiliation_string | Division of Bio & Medical Big Data Department (BK4 Program), Gyeongsang National University, Jinju 52828, Korea |
| authorships[6].affiliations[1].institution_ids | https://openalex.org/I189442560 |
| authorships[6].affiliations[1].raw_affiliation_string | Division of Life Science Department, Gyeongsang National University, Jinju 52828, Korea |
| authorships[6].institutions[0].id | https://openalex.org/I189442560 |
| authorships[6].institutions[0].ror | https://ror.org/00saywf64 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I189442560 |
| authorships[6].institutions[0].country_code | KR |
| authorships[6].institutions[0].display_name | Gyeongsang National University |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Yang Jae Kang |
| authorships[6].is_corresponding | True |
| authorships[6].raw_affiliation_strings | Division of Bio & Medical Big Data Department (BK4 Program), Gyeongsang National University, Jinju 52828, Korea, Division of Life Science Department, Gyeongsang National University, Jinju 52828, Korea |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2223-7747/10/12/2714/pdf?version=1639134455 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Optimizing the Experimental Method for Stomata-Profiling Automation of Soybean Leaves Based on Deep Learning |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10616 |
| primary_topic.field.id | https://openalex.org/fields/11 |
| primary_topic.field.display_name | Agricultural and Biological Sciences |
| primary_topic.score | 0.9984999895095825 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1110 |
| primary_topic.subfield.display_name | Plant Science |
| primary_topic.display_name | Smart Agriculture and AI |
| related_works | https://openalex.org/W2731899572, https://openalex.org/W2961085424, https://openalex.org/W3215138031, https://openalex.org/W4306674287, https://openalex.org/W3009238340, https://openalex.org/W4360585206, https://openalex.org/W4321369474, https://openalex.org/W4285208911, https://openalex.org/W4387369504, https://openalex.org/W3046775127 |
| cited_by_count | 11 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 4 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 5 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 1 |
| locations_count | 5 |
| best_oa_location.id | doi:10.3390/plants10122714 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210230202 |
| best_oa_location.source.issn | 2223-7747 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2223-7747 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Plants |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2223-7747/10/12/2714/pdf?version=1639134455 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Plants |
| best_oa_location.landing_page_url | https://doi.org/10.3390/plants10122714 |
| primary_location.id | doi:10.3390/plants10122714 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210230202 |
| primary_location.source.issn | 2223-7747 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2223-7747 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Plants |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2223-7747/10/12/2714/pdf?version=1639134455 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Plants |
| primary_location.landing_page_url | https://doi.org/10.3390/plants10122714 |
| publication_date | 2021-12-10 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2804910112, https://openalex.org/W2056929352, https://openalex.org/W2125122025, https://openalex.org/W2196027445, https://openalex.org/W2950553695, https://openalex.org/W2063816519, https://openalex.org/W2022908830, https://openalex.org/W2118098529, https://openalex.org/W2015811971, https://openalex.org/W2945710659, https://openalex.org/W2063956289, https://openalex.org/W2145804688, https://openalex.org/W2036569268, https://openalex.org/W3005771850, https://openalex.org/W2884367402, https://openalex.org/W2753403518, https://openalex.org/W3013403470, https://openalex.org/W2943957125, https://openalex.org/W3082115252, https://openalex.org/W2734454153, https://openalex.org/W3008914341, https://openalex.org/W2751703475, https://openalex.org/W6695237428, https://openalex.org/W2080246414, https://openalex.org/W3177849855, https://openalex.org/W6641051470, https://openalex.org/W2080634238, https://openalex.org/W2019749532, https://openalex.org/W6661566957, https://openalex.org/W2018274816, https://openalex.org/W3003161903, https://openalex.org/W2905179411, https://openalex.org/W2978637481, https://openalex.org/W2513204472, https://openalex.org/W2019625874, https://openalex.org/W40357692, https://openalex.org/W2953889816, https://openalex.org/W2407677112, https://openalex.org/W2028078064, https://openalex.org/W3090548767, https://openalex.org/W2586575418, https://openalex.org/W2981587894, https://openalex.org/W2530742326, https://openalex.org/W2044715649, https://openalex.org/W1963903479, https://openalex.org/W2281036777 |
| referenced_works_count | 46 |
| abstract_inverted_index.A | 153 |
| abstract_inverted_index.a | 20, 99, 128 |
| abstract_inverted_index.An | 63 |
| abstract_inverted_index.We | 18, 40 |
| abstract_inverted_index.an | 119, 136 |
| abstract_inverted_index.by | 33, 37 |
| abstract_inverted_index.in | 30, 55, 61 |
| abstract_inverted_index.is | 98, 105, 156 |
| abstract_inverted_index.of | 9, 28, 69, 78, 162, 172 |
| abstract_inverted_index.to | 57, 108, 158 |
| abstract_inverted_index.we | 82, 117 |
| abstract_inverted_index.1:1 | 66 |
| abstract_inverted_index.95% | 70 |
| abstract_inverted_index.The | 142 |
| abstract_inverted_index.and | 2, 15, 50, 72, 85, 88, 95, 126 |
| abstract_inverted_index.any | 166 |
| abstract_inverted_index.are | 6 |
| abstract_inverted_index.for | 11, 24, 92, 102, 165 |
| abstract_inverted_index.mAP | 151 |
| abstract_inverted_index.new | 21, 174 |
| abstract_inverted_index.the | 59, 160, 173 |
| abstract_inverted_index.use | 171 |
| abstract_inverted_index.This | 97 |
| abstract_inverted_index.YOLO | 143 |
| abstract_inverted_index.both | 93 |
| abstract_inverted_index.data | 112, 168 |
| abstract_inverted_index.deep | 38, 124 |
| abstract_inverted_index.from | 113 |
| abstract_inverted_index.good | 100 |
| abstract_inverted_index.high | 150 |
| abstract_inverted_index.more | 106 |
| abstract_inverted_index.that | 131, 169 |
| abstract_inverted_index.this | 114 |
| abstract_inverted_index.upon | 47 |
| abstract_inverted_index.with | 149 |
| abstract_inverted_index.(v/v) | 67 |
| abstract_inverted_index.NaOCl | 73 |
| abstract_inverted_index.Using | 110 |
| abstract_inverted_index.YOLO. | 141 |
| abstract_inverted_index.agent | 44 |
| abstract_inverted_index.apply | 159 |
| abstract_inverted_index.based | 46 |
| abstract_inverted_index.eight | 42 |
| abstract_inverted_index.makes | 170 |
| abstract_inverted_index.model | 139, 145, 161 |
| abstract_inverted_index.order | 56 |
| abstract_inverted_index.toxic | 107 |
| abstract_inverted_index.using | 123, 140 |
| abstract_inverted_index.which | 104 |
| abstract_inverted_index.agents | 87 |
| abstract_inverted_index.better | 75 |
| abstract_inverted_index.images | 77 |
| abstract_inverted_index.method | 23 |
| abstract_inverted_index.object | 137 |
| abstract_inverted_index.sodium | 51 |
| abstract_inverted_index.tested | 41 |
| abstract_inverted_index.useful | 7 |
| abstract_inverted_index.(NaOCl) | 53 |
| abstract_inverted_index.ethanol | 49, 71, 91 |
| abstract_inverted_index.handle. | 109 |
| abstract_inverted_index.imaging | 27, 111 |
| abstract_inverted_index.improve | 58 |
| abstract_inverted_index.leaves. | 62 |
| abstract_inverted_index.method, | 116 |
| abstract_inverted_index.mixture | 68 |
| abstract_inverted_index.optimal | 64 |
| abstract_inverted_index.present | 19 |
| abstract_inverted_index.quality | 76 |
| abstract_inverted_index.soybean | 31, 79, 167 |
| abstract_inverted_index.stomata | 10, 29, 134, 148 |
| abstract_inverted_index.through | 135 |
| abstract_inverted_index.(~0.99). | 152 |
| abstract_inverted_index.Stomatal | 0 |
| abstract_inverted_index.absolute | 90 |
| abstract_inverted_index.analyses | 8 |
| abstract_inverted_index.analyzes | 133 |
| abstract_inverted_index.clearing | 22, 43, 115, 175 |
| abstract_inverted_index.detector | 122 |
| abstract_inverted_index.fixation | 94 |
| abstract_inverted_index.followed | 32 |
| abstract_inverted_index.improved | 25, 127 |
| abstract_inverted_index.learning | 125 |
| abstract_inverted_index.provided | 157 |
| abstract_inverted_index.selected | 89 |
| abstract_inverted_index.stomata. | 80 |
| abstract_inverted_index.stomatal | 4, 35, 121, 163 |
| abstract_inverted_index.studies. | 17 |
| abstract_inverted_index.algorithm | 130 |
| abstract_inverted_index.automated | 34 |
| abstract_inverted_index.automatic | 3, 120 |
| abstract_inverted_index.detection | 5, 36, 138, 164 |
| abstract_inverted_index.developed | 118 |
| abstract_inverted_index.different | 48 |
| abstract_inverted_index.evaluated | 83 |
| abstract_inverted_index.fixatives | 84 |
| abstract_inverted_index.interface | 155 |
| abstract_inverted_index.learning. | 39 |
| abstract_inverted_index.protocol. | 176 |
| abstract_inverted_index.web-based | 154 |
| abstract_inverted_index.recognized | 147 |
| abstract_inverted_index.substitute | 101 |
| abstract_inverted_index.taxonomic, | 12 |
| abstract_inverted_index.biological, | 13 |
| abstract_inverted_index.dehydrating | 86 |
| abstract_inverted_index.microscopic | 26 |
| abstract_inverted_index.observation | 1 |
| abstract_inverted_index.dehydration. | 96 |
| abstract_inverted_index.formulations | 45 |
| abstract_inverted_index.hypochlorite | 52 |
| abstract_inverted_index.successfully | 146 |
| abstract_inverted_index.transparency | 60 |
| abstract_inverted_index.Additionally, | 81 |
| abstract_inverted_index.automatically | 132 |
| abstract_inverted_index.deep-learning | 129, 144 |
| abstract_inverted_index.formaldehyde, | 103 |
| abstract_inverted_index.concentrations | 54 |
| abstract_inverted_index.physiological, | 14 |
| abstract_inverted_index.formulation—a | 65 |
| abstract_inverted_index.eco-physiological | 16 |
| abstract_inverted_index.(6–14%)—produced | 74 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5091261738, https://openalex.org/A5085827645 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 7 |
| corresponding_institution_ids | https://openalex.org/I189442560, https://openalex.org/I31419693 |
| citation_normalized_percentile.value | 0.85314685 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |