Optimizing the Learning Rate Hyperparameter for Hybrid BiLSTM-FFNN Model in a Tourism Recommendation System Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.15408/jti.v17i2.40250
Indonesia, with its abundant natural resources, is rich in captivating tourist attractions. Tourism, a vital economic sector, can be significantly influenced by digitalization through social media. However, the overwhelming amount of information available can confuse tourists when selecting suitable destinations. This research aims to develop a tourism recommendation system employing content-based filtering (CBF) and hybrid Bidirectional Long Short-Term Memory Feed-Forward Neural Network (BiLSTM-FFNN) model to assist tourists in making informed choices. The dataset comprises 9,504 rating matrices obtained from tweet data and reputable web sources. In various experiments, the hybrid BiLSTM-FFNN model demonstrated superior performance, achieving an accuracy of 93.36% following optimization with the Stochastic Gradient Descent (SGD) algorithm at a learning rate of about 0.193. The accuracy, after applying Synthetic Minority Over-sampling Technique (SMOTE) and fine-tuning the learning rate hyperparameter, showed a 14.3% improvement over the baseline model. This research contributes by developing a recommendation system method that integrates CBF and hybrid deep learning with high accuracy and provides a detailed analysis of optimization techniques and hyperparameter tuning.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.15408/jti.v17i2.40250
- https://journal.uinjkt.ac.id/index.php/ti/article/download/40250/pdf
- OA Status
- diamond
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4403428209
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4403428209Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.15408/jti.v17i2.40250Digital Object Identifier
- Title
-
Optimizing the Learning Rate Hyperparameter for Hybrid BiLSTM-FFNN Model in a Tourism Recommendation SystemWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-10-14Full publication date if available
- Authors
-
Ali Mustofa, Erwin Budi SetiawanList of authors in order
- Landing page
-
https://doi.org/10.15408/jti.v17i2.40250Publisher landing page
- PDF URL
-
https://journal.uinjkt.ac.id/index.php/ti/article/download/40250/pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://journal.uinjkt.ac.id/index.php/ti/article/download/40250/pdfDirect OA link when available
- Concepts
-
Hyperparameter, Tourism, Computer science, Artificial intelligence, Machine learning, Geography, ArchaeologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4403428209 |
|---|---|
| doi | https://doi.org/10.15408/jti.v17i2.40250 |
| ids.doi | https://doi.org/10.15408/jti.v17i2.40250 |
| ids.openalex | https://openalex.org/W4403428209 |
| fwci | 0.0 |
| type | article |
| title | Optimizing the Learning Rate Hyperparameter for Hybrid BiLSTM-FFNN Model in a Tourism Recommendation System |
| biblio.issue | 2 |
| biblio.volume | 17 |
| biblio.last_page | 126 |
| biblio.first_page | 112 |
| topics[0].id | https://openalex.org/T13676 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.6843000054359436 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1710 |
| topics[0].subfield.display_name | Information Systems |
| topics[0].display_name | Educational and Technological Research |
| topics[1].id | https://openalex.org/T12260 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.6362000107765198 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Educational Technology and Pedagogy |
| topics[2].id | https://openalex.org/T14025 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.6201000213623047 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1710 |
| topics[2].subfield.display_name | Information Systems |
| topics[2].display_name | Educational Technology and Assessment |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C8642999 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8759328126907349 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q4171168 |
| concepts[0].display_name | Hyperparameter |
| concepts[1].id | https://openalex.org/C18918823 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5946248173713684 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q49389 |
| concepts[1].display_name | Tourism |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5022909641265869 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.4009946882724762 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3537924289703369 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| concepts[5].id | https://openalex.org/C205649164 |
| concepts[5].level | 0 |
| concepts[5].score | 0.13782772421836853 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[5].display_name | Geography |
| concepts[6].id | https://openalex.org/C166957645 |
| concepts[6].level | 1 |
| concepts[6].score | 0.0 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q23498 |
| concepts[6].display_name | Archaeology |
| keywords[0].id | https://openalex.org/keywords/hyperparameter |
| keywords[0].score | 0.8759328126907349 |
| keywords[0].display_name | Hyperparameter |
| keywords[1].id | https://openalex.org/keywords/tourism |
| keywords[1].score | 0.5946248173713684 |
| keywords[1].display_name | Tourism |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5022909641265869 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.4009946882724762 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.3537924289703369 |
| keywords[4].display_name | Machine learning |
| keywords[5].id | https://openalex.org/keywords/geography |
| keywords[5].score | 0.13782772421836853 |
| keywords[5].display_name | Geography |
| language | en |
| locations[0].id | doi:10.15408/jti.v17i2.40250 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210196111 |
| locations[0].source.issn | 1979-9160, 2549-7901 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1979-9160 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | JURNAL TEKNIK INFORMATIKA |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | cc-by-sa |
| locations[0].pdf_url | https://journal.uinjkt.ac.id/index.php/ti/article/download/40250/pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | JURNAL TEKNIK INFORMATIKA |
| locations[0].landing_page_url | https://doi.org/10.15408/jti.v17i2.40250 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5101935824 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2802-6873 |
| authorships[0].author.display_name | Ali Mustofa |
| authorships[0].countries | ID |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I862893732 |
| authorships[0].affiliations[0].raw_affiliation_string | Informatics, School of Computing, Telkom University |
| authorships[0].institutions[0].id | https://openalex.org/I862893732 |
| authorships[0].institutions[0].ror | https://ror.org/0004wsx81 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I862893732 |
| authorships[0].institutions[0].country_code | ID |
| authorships[0].institutions[0].display_name | Telkom University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Aufa Ab'dil Mustofa |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Informatics, School of Computing, Telkom University |
| authorships[1].author.id | https://openalex.org/A5023888994 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2121-8776 |
| authorships[1].author.display_name | Erwin Budi Setiawan |
| authorships[1].countries | ID |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I862893732 |
| authorships[1].affiliations[0].raw_affiliation_string | Informatics, School of Computing, Telkom University, Indonesia |
| authorships[1].institutions[0].id | https://openalex.org/I862893732 |
| authorships[1].institutions[0].ror | https://ror.org/0004wsx81 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I862893732 |
| authorships[1].institutions[0].country_code | ID |
| authorships[1].institutions[0].display_name | Telkom University |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Erwin Budi Setiawan |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Informatics, School of Computing, Telkom University, Indonesia |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://journal.uinjkt.ac.id/index.php/ti/article/download/40250/pdf |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Optimizing the Learning Rate Hyperparameter for Hybrid BiLSTM-FFNN Model in a Tourism Recommendation System |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T13676 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.6843000054359436 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1710 |
| primary_topic.subfield.display_name | Information Systems |
| primary_topic.display_name | Educational and Technological Research |
| related_works | https://openalex.org/W2602382373, https://openalex.org/W3003615511, https://openalex.org/W4285827128, https://openalex.org/W3198113463, https://openalex.org/W2961085424, https://openalex.org/W2787698406, https://openalex.org/W2963844355, https://openalex.org/W4306674287, https://openalex.org/W4361251046, https://openalex.org/W98577079 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.15408/jti.v17i2.40250 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210196111 |
| best_oa_location.source.issn | 1979-9160, 2549-7901 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1979-9160 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | JURNAL TEKNIK INFORMATIKA |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | cc-by-sa |
| best_oa_location.pdf_url | https://journal.uinjkt.ac.id/index.php/ti/article/download/40250/pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-sa |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | JURNAL TEKNIK INFORMATIKA |
| best_oa_location.landing_page_url | https://doi.org/10.15408/jti.v17i2.40250 |
| primary_location.id | doi:10.15408/jti.v17i2.40250 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210196111 |
| primary_location.source.issn | 1979-9160, 2549-7901 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1979-9160 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | JURNAL TEKNIK INFORMATIKA |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | cc-by-sa |
| primary_location.pdf_url | https://journal.uinjkt.ac.id/index.php/ti/article/download/40250/pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-sa |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | JURNAL TEKNIK INFORMATIKA |
| primary_location.landing_page_url | https://doi.org/10.15408/jti.v17i2.40250 |
| publication_date | 2024-10-14 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 13, 45, 110, 132, 144, 160 |
| abstract_inverted_index.In | 85 |
| abstract_inverted_index.an | 96 |
| abstract_inverted_index.at | 109 |
| abstract_inverted_index.be | 18 |
| abstract_inverted_index.by | 21, 142 |
| abstract_inverted_index.in | 8, 67 |
| abstract_inverted_index.is | 6 |
| abstract_inverted_index.of | 30, 98, 113, 163 |
| abstract_inverted_index.to | 43, 64 |
| abstract_inverted_index.CBF | 150 |
| abstract_inverted_index.The | 71, 116 |
| abstract_inverted_index.and | 53, 81, 125, 151, 158, 166 |
| abstract_inverted_index.can | 17, 33 |
| abstract_inverted_index.its | 2 |
| abstract_inverted_index.the | 27, 88, 103, 127, 136 |
| abstract_inverted_index.web | 83 |
| abstract_inverted_index.Long | 56 |
| abstract_inverted_index.This | 40, 139 |
| abstract_inverted_index.aims | 42 |
| abstract_inverted_index.data | 80 |
| abstract_inverted_index.deep | 153 |
| abstract_inverted_index.from | 78 |
| abstract_inverted_index.high | 156 |
| abstract_inverted_index.over | 135 |
| abstract_inverted_index.rate | 112, 129 |
| abstract_inverted_index.rich | 7 |
| abstract_inverted_index.that | 148 |
| abstract_inverted_index.when | 36 |
| abstract_inverted_index.with | 1, 102, 155 |
| abstract_inverted_index.(CBF) | 52 |
| abstract_inverted_index.(SGD) | 107 |
| abstract_inverted_index.14.3% | 133 |
| abstract_inverted_index.9,504 | 74 |
| abstract_inverted_index.about | 114 |
| abstract_inverted_index.after | 118 |
| abstract_inverted_index.model | 63, 91 |
| abstract_inverted_index.tweet | 79 |
| abstract_inverted_index.vital | 14 |
| abstract_inverted_index.0.193. | 115 |
| abstract_inverted_index.93.36% | 99 |
| abstract_inverted_index.Memory | 58 |
| abstract_inverted_index.Neural | 60 |
| abstract_inverted_index.amount | 29 |
| abstract_inverted_index.assist | 65 |
| abstract_inverted_index.hybrid | 54, 89, 152 |
| abstract_inverted_index.making | 68 |
| abstract_inverted_index.media. | 25 |
| abstract_inverted_index.method | 147 |
| abstract_inverted_index.model. | 138 |
| abstract_inverted_index.rating | 75 |
| abstract_inverted_index.showed | 131 |
| abstract_inverted_index.social | 24 |
| abstract_inverted_index.system | 48, 146 |
| abstract_inverted_index.(SMOTE) | 124 |
| abstract_inverted_index.Descent | 106 |
| abstract_inverted_index.Network | 61 |
| abstract_inverted_index.confuse | 34 |
| abstract_inverted_index.dataset | 72 |
| abstract_inverted_index.develop | 44 |
| abstract_inverted_index.natural | 4 |
| abstract_inverted_index.sector, | 16 |
| abstract_inverted_index.through | 23 |
| abstract_inverted_index.tourism | 46 |
| abstract_inverted_index.tourist | 10 |
| abstract_inverted_index.tuning. | 168 |
| abstract_inverted_index.various | 86 |
| abstract_inverted_index.Gradient | 105 |
| abstract_inverted_index.However, | 26 |
| abstract_inverted_index.Minority | 121 |
| abstract_inverted_index.Tourism, | 12 |
| abstract_inverted_index.abundant | 3 |
| abstract_inverted_index.accuracy | 97, 157 |
| abstract_inverted_index.analysis | 162 |
| abstract_inverted_index.applying | 119 |
| abstract_inverted_index.baseline | 137 |
| abstract_inverted_index.choices. | 70 |
| abstract_inverted_index.detailed | 161 |
| abstract_inverted_index.economic | 15 |
| abstract_inverted_index.informed | 69 |
| abstract_inverted_index.learning | 111, 128, 154 |
| abstract_inverted_index.matrices | 76 |
| abstract_inverted_index.obtained | 77 |
| abstract_inverted_index.provides | 159 |
| abstract_inverted_index.research | 41, 140 |
| abstract_inverted_index.sources. | 84 |
| abstract_inverted_index.suitable | 38 |
| abstract_inverted_index.superior | 93 |
| abstract_inverted_index.tourists | 35, 66 |
| abstract_inverted_index.Synthetic | 120 |
| abstract_inverted_index.Technique | 123 |
| abstract_inverted_index.accuracy, | 117 |
| abstract_inverted_index.achieving | 95 |
| abstract_inverted_index.algorithm | 108 |
| abstract_inverted_index.available | 32 |
| abstract_inverted_index.comprises | 73 |
| abstract_inverted_index.employing | 49 |
| abstract_inverted_index.filtering | 51 |
| abstract_inverted_index.following | 100 |
| abstract_inverted_index.reputable | 82 |
| abstract_inverted_index.selecting | 37 |
| abstract_inverted_index.Indonesia, | 0 |
| abstract_inverted_index.Short-Term | 57 |
| abstract_inverted_index.Stochastic | 104 |
| abstract_inverted_index.developing | 143 |
| abstract_inverted_index.influenced | 20 |
| abstract_inverted_index.integrates | 149 |
| abstract_inverted_index.resources, | 5 |
| abstract_inverted_index.techniques | 165 |
| abstract_inverted_index.BiLSTM-FFNN | 90 |
| abstract_inverted_index.captivating | 9 |
| abstract_inverted_index.contributes | 141 |
| abstract_inverted_index.fine-tuning | 126 |
| abstract_inverted_index.improvement | 134 |
| abstract_inverted_index.information | 31 |
| abstract_inverted_index.Feed-Forward | 59 |
| abstract_inverted_index.attractions. | 11 |
| abstract_inverted_index.demonstrated | 92 |
| abstract_inverted_index.experiments, | 87 |
| abstract_inverted_index.optimization | 101, 164 |
| abstract_inverted_index.overwhelming | 28 |
| abstract_inverted_index.performance, | 94 |
| abstract_inverted_index.(BiLSTM-FFNN) | 62 |
| abstract_inverted_index.Bidirectional | 55 |
| abstract_inverted_index.Over-sampling | 122 |
| abstract_inverted_index.content-based | 50 |
| abstract_inverted_index.destinations. | 39 |
| abstract_inverted_index.significantly | 19 |
| abstract_inverted_index.digitalization | 22 |
| abstract_inverted_index.hyperparameter | 167 |
| abstract_inverted_index.recommendation | 47, 145 |
| abstract_inverted_index.hyperparameter, | 130 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/8 |
| sustainable_development_goals[0].score | 0.6499999761581421 |
| sustainable_development_goals[0].display_name | Decent work and economic growth |
| citation_normalized_percentile.value | 0.30546475 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |