Optimizing Unmanned Aerial Vehicle LiDAR Data Collection in Cotton Through Flight Settings and Data Processing Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/rs17091504
Light Detection and Ranging (LiDAR) technology can be used to assess canopy height in cotton (Gossypium hirsutum L.), but standardized data acquisition and processing guidelines are lacking. Accurate canopy height estimation is crucial in cotton for optimizing growth regulator application and maximizing yield. The main goal of this study was to determine the optimal unmanned aerial vehicle flight settings—altitude and speed—and assess specific processing parameters’ impact on data accuracy, processing time, and file size. Nine flight settings comprising three altitudes (12.2 m, 24.4 m, and 48.8 m) and three speeds (4.8 km/h, 9.6 km/h, and 14.4 km/h) were tested. LiDAR data were processed using DJI Terra software (v. 4.1.0), where two user-defined processing steps were examined: point-cloud thinning via grid size sub-sampling (0, 10, 20, 30, 40, and 50 cm) and slope classification (flat, gentle, and steep). The optimal flight altitude was 24.4 m, with no effect of flight speed. Grid sub-sampling up to 20 cm produced balanced accuracy, processing time, and file size. The choice of slope category had no significant effect on LiDAR-derived canopy height. These findings contribute to the development of standardized LiDAR data acquisition and processing guidelines for cotton to support crop management decision.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/rs17091504
- https://www.mdpi.com/2072-4292/17/9/1504/pdf?version=1745488687
- OA Status
- gold
- References
- 55
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4409733924
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4409733924Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/rs17091504Digital Object Identifier
- Title
-
Optimizing Unmanned Aerial Vehicle LiDAR Data Collection in Cotton Through Flight Settings and Data ProcessingWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-04-24Full publication date if available
- Authors
-
Anish Bhattarai, Gonzalo Joel Scarpin, Amrinder Jakhar, Wesley Porter, Lavesta C. Hand, John L. Snider, Leonardo M. BastosList of authors in order
- Landing page
-
https://doi.org/10.3390/rs17091504Publisher landing page
- PDF URL
-
https://www.mdpi.com/2072-4292/17/9/1504/pdf?version=1745488687Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2072-4292/17/9/1504/pdf?version=1745488687Direct OA link when available
- Concepts
-
Lidar, Remote sensing, Environmental science, Data processing, Data collection, Computer science, Geology, Mathematics, Operating system, StatisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
55Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4409733924 |
|---|---|
| doi | https://doi.org/10.3390/rs17091504 |
| ids.doi | https://doi.org/10.3390/rs17091504 |
| ids.openalex | https://openalex.org/W4409733924 |
| fwci | 0.0 |
| type | article |
| title | Optimizing Unmanned Aerial Vehicle LiDAR Data Collection in Cotton Through Flight Settings and Data Processing |
| biblio.issue | 9 |
| biblio.volume | 17 |
| biblio.last_page | 1504 |
| biblio.first_page | 1504 |
| topics[0].id | https://openalex.org/T11164 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2305 |
| topics[0].subfield.display_name | Environmental Engineering |
| topics[0].display_name | Remote Sensing and LiDAR Applications |
| topics[1].id | https://openalex.org/T11211 |
| topics[1].field.id | https://openalex.org/fields/19 |
| topics[1].field.display_name | Earth and Planetary Sciences |
| topics[1].score | 0.9886000156402588 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1907 |
| topics[1].subfield.display_name | Geology |
| topics[1].display_name | 3D Surveying and Cultural Heritage |
| topics[2].id | https://openalex.org/T12161 |
| topics[2].field.id | https://openalex.org/fields/11 |
| topics[2].field.display_name | Agricultural and Biological Sciences |
| topics[2].score | 0.9879999756813049 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1110 |
| topics[2].subfield.display_name | Plant Science |
| topics[2].display_name | Plant Surface Properties and Treatments |
| is_xpac | False |
| apc_list.value | 2500 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2707 |
| apc_paid.value | 2500 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2707 |
| concepts[0].id | https://openalex.org/C51399673 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7385127544403076 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q504027 |
| concepts[0].display_name | Lidar |
| concepts[1].id | https://openalex.org/C62649853 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6988629698753357 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[1].display_name | Remote sensing |
| concepts[2].id | https://openalex.org/C39432304 |
| concepts[2].level | 0 |
| concepts[2].score | 0.4879857897758484 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[2].display_name | Environmental science |
| concepts[3].id | https://openalex.org/C138827492 |
| concepts[3].level | 2 |
| concepts[3].score | 0.43243902921676636 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q6661985 |
| concepts[3].display_name | Data processing |
| concepts[4].id | https://openalex.org/C133462117 |
| concepts[4].level | 2 |
| concepts[4].score | 0.41080546379089355 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q4929239 |
| concepts[4].display_name | Data collection |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.35368430614471436 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C127313418 |
| concepts[6].level | 0 |
| concepts[6].score | 0.1313571333885193 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[6].display_name | Geology |
| concepts[7].id | https://openalex.org/C33923547 |
| concepts[7].level | 0 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[7].display_name | Mathematics |
| concepts[8].id | https://openalex.org/C111919701 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[8].display_name | Operating system |
| concepts[9].id | https://openalex.org/C105795698 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[9].display_name | Statistics |
| keywords[0].id | https://openalex.org/keywords/lidar |
| keywords[0].score | 0.7385127544403076 |
| keywords[0].display_name | Lidar |
| keywords[1].id | https://openalex.org/keywords/remote-sensing |
| keywords[1].score | 0.6988629698753357 |
| keywords[1].display_name | Remote sensing |
| keywords[2].id | https://openalex.org/keywords/environmental-science |
| keywords[2].score | 0.4879857897758484 |
| keywords[2].display_name | Environmental science |
| keywords[3].id | https://openalex.org/keywords/data-processing |
| keywords[3].score | 0.43243902921676636 |
| keywords[3].display_name | Data processing |
| keywords[4].id | https://openalex.org/keywords/data-collection |
| keywords[4].score | 0.41080546379089355 |
| keywords[4].display_name | Data collection |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.35368430614471436 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/geology |
| keywords[6].score | 0.1313571333885193 |
| keywords[6].display_name | Geology |
| language | en |
| locations[0].id | doi:10.3390/rs17091504 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S43295729 |
| locations[0].source.issn | 2072-4292 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2072-4292 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Remote Sensing |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2072-4292/17/9/1504/pdf?version=1745488687 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Remote Sensing |
| locations[0].landing_page_url | https://doi.org/10.3390/rs17091504 |
| locations[1].id | pmh:oai:doaj.org/article:36b5bfdd977347089db95ea18717bf68 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Remote Sensing, Vol 17, Iss 9, p 1504 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/36b5bfdd977347089db95ea18717bf68 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5117278317 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Anish Bhattarai |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I165733156 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Crop and Soil Sciences, University of Georgia, Miller Plant Sciences Building, 120 Carlton Street, Athens, GA 30602, USA |
| authorships[0].institutions[0].id | https://openalex.org/I165733156 |
| authorships[0].institutions[0].ror | https://ror.org/00te3t702 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I165733156 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of Georgia |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Anish Bhattarai |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Crop and Soil Sciences, University of Georgia, Miller Plant Sciences Building, 120 Carlton Street, Athens, GA 30602, USA |
| authorships[1].author.id | https://openalex.org/A5079147864 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7625-1453 |
| authorships[1].author.display_name | Gonzalo Joel Scarpin |
| authorships[1].countries | AR, US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I165733156 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Crop and Soil Sciences, University of Georgia, Miller Plant Sciences Building, 120 Carlton Street, Athens, GA 30602, USA |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I4210153948 |
| authorships[1].affiliations[1].raw_affiliation_string | Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental de Reconquista, Ruta Nacional N.° 11, km 773, Reconquista 3560, Santa Fe, Argentina |
| authorships[1].institutions[0].id | https://openalex.org/I4210153948 |
| authorships[1].institutions[0].ror | https://ror.org/04wm52x94 |
| authorships[1].institutions[0].type | government |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210153948 |
| authorships[1].institutions[0].country_code | AR |
| authorships[1].institutions[0].display_name | National Agricultural Technology Institute |
| authorships[1].institutions[1].id | https://openalex.org/I165733156 |
| authorships[1].institutions[1].ror | https://ror.org/00te3t702 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I165733156 |
| authorships[1].institutions[1].country_code | US |
| authorships[1].institutions[1].display_name | University of Georgia |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Gonzalo J. Scarpin |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Crop and Soil Sciences, University of Georgia, Miller Plant Sciences Building, 120 Carlton Street, Athens, GA 30602, USA, Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental de Reconquista, Ruta Nacional N.° 11, km 773, Reconquista 3560, Santa Fe, Argentina |
| authorships[2].author.id | https://openalex.org/A5116547014 |
| authorships[2].author.orcid | https://orcid.org/0009-0001-9110-8118 |
| authorships[2].author.display_name | Amrinder Jakhar |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I165733156 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Crop and Soil Sciences, University of Georgia, Miller Plant Sciences Building, 120 Carlton Street, Athens, GA 30602, USA |
| authorships[2].institutions[0].id | https://openalex.org/I165733156 |
| authorships[2].institutions[0].ror | https://ror.org/00te3t702 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I165733156 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | University of Georgia |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Amrinder Jakhar |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Crop and Soil Sciences, University of Georgia, Miller Plant Sciences Building, 120 Carlton Street, Athens, GA 30602, USA |
| authorships[3].author.id | https://openalex.org/A5052486723 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Wesley Porter |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I165733156 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Crop and Soil Sciences, University of Georgia, 2282 Rainwater Rd., Tifton, GA 31793, USA |
| authorships[3].institutions[0].id | https://openalex.org/I165733156 |
| authorships[3].institutions[0].ror | https://ror.org/00te3t702 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I165733156 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | University of Georgia |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Wesley Porter |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Crop and Soil Sciences, University of Georgia, 2282 Rainwater Rd., Tifton, GA 31793, USA |
| authorships[4].author.id | https://openalex.org/A5015410083 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-7343-6900 |
| authorships[4].author.display_name | Lavesta C. Hand |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I165733156 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Crop and Soil Sciences, University of Georgia, 2282 Rainwater Rd., Tifton, GA 31793, USA |
| authorships[4].institutions[0].id | https://openalex.org/I165733156 |
| authorships[4].institutions[0].ror | https://ror.org/00te3t702 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I165733156 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | University of Georgia |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Lavesta C. Hand |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Crop and Soil Sciences, University of Georgia, 2282 Rainwater Rd., Tifton, GA 31793, USA |
| authorships[5].author.id | https://openalex.org/A5061803603 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-6535-7711 |
| authorships[5].author.display_name | John L. Snider |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I165733156 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Crop and Soil Sciences, University of Georgia, 2282 Rainwater Rd., Tifton, GA 31793, USA |
| authorships[5].institutions[0].id | https://openalex.org/I165733156 |
| authorships[5].institutions[0].ror | https://ror.org/00te3t702 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I165733156 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | University of Georgia |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | John L. Snider |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Crop and Soil Sciences, University of Georgia, 2282 Rainwater Rd., Tifton, GA 31793, USA |
| authorships[6].author.id | https://openalex.org/A5088129384 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-8958-6527 |
| authorships[6].author.display_name | Leonardo M. Bastos |
| authorships[6].countries | US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I165733156 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Crop and Soil Sciences, University of Georgia, Miller Plant Sciences Building, 120 Carlton Street, Athens, GA 30602, USA |
| authorships[6].institutions[0].id | https://openalex.org/I165733156 |
| authorships[6].institutions[0].ror | https://ror.org/00te3t702 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I165733156 |
| authorships[6].institutions[0].country_code | US |
| authorships[6].institutions[0].display_name | University of Georgia |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Leonardo M. Bastos |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Crop and Soil Sciences, University of Georgia, Miller Plant Sciences Building, 120 Carlton Street, Athens, GA 30602, USA |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2072-4292/17/9/1504/pdf?version=1745488687 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Optimizing Unmanned Aerial Vehicle LiDAR Data Collection in Cotton Through Flight Settings and Data Processing |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11164 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2305 |
| primary_topic.subfield.display_name | Environmental Engineering |
| primary_topic.display_name | Remote Sensing and LiDAR Applications |
| related_works | https://openalex.org/W4319317934, https://openalex.org/W4406302447, https://openalex.org/W2901265155, https://openalex.org/W2956374172, https://openalex.org/W4319837668, https://openalex.org/W2351984678, https://openalex.org/W2140032575, https://openalex.org/W2011860471, https://openalex.org/W2012196540, https://openalex.org/W3011451421 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3390/rs17091504 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S43295729 |
| best_oa_location.source.issn | 2072-4292 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2072-4292 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Remote Sensing |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2072-4292/17/9/1504/pdf?version=1745488687 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Remote Sensing |
| best_oa_location.landing_page_url | https://doi.org/10.3390/rs17091504 |
| primary_location.id | doi:10.3390/rs17091504 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S43295729 |
| primary_location.source.issn | 2072-4292 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2072-4292 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Remote Sensing |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2072-4292/17/9/1504/pdf?version=1745488687 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Remote Sensing |
| primary_location.landing_page_url | https://doi.org/10.3390/rs17091504 |
| publication_date | 2025-04-24 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4247115800, https://openalex.org/W6768286220, https://openalex.org/W6685452652, https://openalex.org/W6721522993, https://openalex.org/W2020849169, https://openalex.org/W3031157414, https://openalex.org/W4200169179, https://openalex.org/W2792783324, https://openalex.org/W2600500039, https://openalex.org/W2027911527, https://openalex.org/W2129201358, https://openalex.org/W2035468110, https://openalex.org/W2220061396, https://openalex.org/W2962595552, https://openalex.org/W4387451910, https://openalex.org/W3134926657, https://openalex.org/W2117966692, https://openalex.org/W2068845501, https://openalex.org/W4281734944, https://openalex.org/W2027781877, https://openalex.org/W3042626839, https://openalex.org/W3015952109, https://openalex.org/W2406402377, https://openalex.org/W4327575250, https://openalex.org/W2971872054, https://openalex.org/W4220984577, https://openalex.org/W3010715462, https://openalex.org/W2912419569, https://openalex.org/W3088507381, https://openalex.org/W2792434602, https://openalex.org/W2969597999, https://openalex.org/W6746285412, https://openalex.org/W4385251910, https://openalex.org/W2903546172, https://openalex.org/W4399724727, https://openalex.org/W3011636737, https://openalex.org/W3037431821, https://openalex.org/W2074252859, https://openalex.org/W4318293172, https://openalex.org/W2810801793, https://openalex.org/W2768558813, https://openalex.org/W4391937083, https://openalex.org/W1981527205, https://openalex.org/W3132993087, https://openalex.org/W2620645313, https://openalex.org/W4200473331, https://openalex.org/W2011938923, https://openalex.org/W2983549117, https://openalex.org/W2536582344, https://openalex.org/W4394706293, https://openalex.org/W1973410798, https://openalex.org/W2032185885, https://openalex.org/W2767667856, https://openalex.org/W2170258536, https://openalex.org/W2976995057 |
| referenced_works_count | 55 |
| abstract_inverted_index.20 | 154 |
| abstract_inverted_index.50 | 128 |
| abstract_inverted_index.be | 7 |
| abstract_inverted_index.cm | 155 |
| abstract_inverted_index.in | 13, 33 |
| abstract_inverted_index.is | 31 |
| abstract_inverted_index.m) | 86 |
| abstract_inverted_index.m, | 81, 83, 143 |
| abstract_inverted_index.no | 145, 170 |
| abstract_inverted_index.of | 46, 147, 166, 183 |
| abstract_inverted_index.on | 66, 173 |
| abstract_inverted_index.to | 9, 50, 153, 180, 193 |
| abstract_inverted_index.up | 152 |
| abstract_inverted_index.(0, | 122 |
| abstract_inverted_index.(v. | 107 |
| abstract_inverted_index.10, | 123 |
| abstract_inverted_index.20, | 124 |
| abstract_inverted_index.30, | 125 |
| abstract_inverted_index.40, | 126 |
| abstract_inverted_index.9.6 | 92 |
| abstract_inverted_index.DJI | 104 |
| abstract_inverted_index.The | 43, 137, 164 |
| abstract_inverted_index.and | 2, 22, 40, 59, 71, 84, 87, 94, 127, 130, 135, 161, 188 |
| abstract_inverted_index.are | 25 |
| abstract_inverted_index.but | 18 |
| abstract_inverted_index.can | 6 |
| abstract_inverted_index.cm) | 129 |
| abstract_inverted_index.for | 35, 191 |
| abstract_inverted_index.had | 169 |
| abstract_inverted_index.the | 52, 181 |
| abstract_inverted_index.two | 110 |
| abstract_inverted_index.via | 118 |
| abstract_inverted_index.was | 49, 141 |
| abstract_inverted_index.(4.8 | 90 |
| abstract_inverted_index.14.4 | 95 |
| abstract_inverted_index.24.4 | 82, 142 |
| abstract_inverted_index.48.8 | 85 |
| abstract_inverted_index.Grid | 150 |
| abstract_inverted_index.L.), | 17 |
| abstract_inverted_index.Nine | 74 |
| abstract_inverted_index.crop | 195 |
| abstract_inverted_index.data | 20, 67, 100, 186 |
| abstract_inverted_index.file | 72, 162 |
| abstract_inverted_index.goal | 45 |
| abstract_inverted_index.grid | 119 |
| abstract_inverted_index.main | 44 |
| abstract_inverted_index.size | 120 |
| abstract_inverted_index.this | 47 |
| abstract_inverted_index.used | 8 |
| abstract_inverted_index.were | 97, 101, 114 |
| abstract_inverted_index.with | 144 |
| abstract_inverted_index.(12.2 | 80 |
| abstract_inverted_index.LiDAR | 99, 185 |
| abstract_inverted_index.Light | 0 |
| abstract_inverted_index.Terra | 105 |
| abstract_inverted_index.These | 177 |
| abstract_inverted_index.km/h) | 96 |
| abstract_inverted_index.km/h, | 91, 93 |
| abstract_inverted_index.size. | 73, 163 |
| abstract_inverted_index.slope | 131, 167 |
| abstract_inverted_index.steps | 113 |
| abstract_inverted_index.study | 48 |
| abstract_inverted_index.three | 78, 88 |
| abstract_inverted_index.time, | 70, 160 |
| abstract_inverted_index.using | 103 |
| abstract_inverted_index.where | 109 |
| abstract_inverted_index.(flat, | 133 |
| abstract_inverted_index.aerial | 55 |
| abstract_inverted_index.assess | 10, 61 |
| abstract_inverted_index.canopy | 11, 28, 175 |
| abstract_inverted_index.choice | 165 |
| abstract_inverted_index.cotton | 14, 34, 192 |
| abstract_inverted_index.effect | 146, 172 |
| abstract_inverted_index.flight | 57, 75, 139, 148 |
| abstract_inverted_index.growth | 37 |
| abstract_inverted_index.height | 12, 29 |
| abstract_inverted_index.impact | 65 |
| abstract_inverted_index.speed. | 149 |
| abstract_inverted_index.speeds | 89 |
| abstract_inverted_index.yield. | 42 |
| abstract_inverted_index.(LiDAR) | 4 |
| abstract_inverted_index.4.1.0), | 108 |
| abstract_inverted_index.Ranging | 3 |
| abstract_inverted_index.crucial | 32 |
| abstract_inverted_index.gentle, | 134 |
| abstract_inverted_index.height. | 176 |
| abstract_inverted_index.optimal | 53, 138 |
| abstract_inverted_index.steep). | 136 |
| abstract_inverted_index.support | 194 |
| abstract_inverted_index.tested. | 98 |
| abstract_inverted_index.vehicle | 56 |
| abstract_inverted_index.Accurate | 27 |
| abstract_inverted_index.altitude | 140 |
| abstract_inverted_index.balanced | 157 |
| abstract_inverted_index.category | 168 |
| abstract_inverted_index.findings | 178 |
| abstract_inverted_index.hirsutum | 16 |
| abstract_inverted_index.lacking. | 26 |
| abstract_inverted_index.produced | 156 |
| abstract_inverted_index.settings | 76 |
| abstract_inverted_index.software | 106 |
| abstract_inverted_index.specific | 62 |
| abstract_inverted_index.thinning | 117 |
| abstract_inverted_index.unmanned | 54 |
| abstract_inverted_index.Detection | 1 |
| abstract_inverted_index.accuracy, | 68, 158 |
| abstract_inverted_index.altitudes | 79 |
| abstract_inverted_index.decision. | 197 |
| abstract_inverted_index.determine | 51 |
| abstract_inverted_index.examined: | 115 |
| abstract_inverted_index.processed | 102 |
| abstract_inverted_index.regulator | 38 |
| abstract_inverted_index.(Gossypium | 15 |
| abstract_inverted_index.comprising | 77 |
| abstract_inverted_index.contribute | 179 |
| abstract_inverted_index.estimation | 30 |
| abstract_inverted_index.guidelines | 24, 190 |
| abstract_inverted_index.management | 196 |
| abstract_inverted_index.maximizing | 41 |
| abstract_inverted_index.optimizing | 36 |
| abstract_inverted_index.processing | 23, 63, 69, 112, 159, 189 |
| abstract_inverted_index.technology | 5 |
| abstract_inverted_index.acquisition | 21, 187 |
| abstract_inverted_index.application | 39 |
| abstract_inverted_index.development | 182 |
| abstract_inverted_index.point-cloud | 116 |
| abstract_inverted_index.significant | 171 |
| abstract_inverted_index.speed—and | 60 |
| abstract_inverted_index.standardized | 19, 184 |
| abstract_inverted_index.sub-sampling | 121, 151 |
| abstract_inverted_index.user-defined | 111 |
| abstract_inverted_index.LiDAR-derived | 174 |
| abstract_inverted_index.parameters’ | 64 |
| abstract_inverted_index.classification | 132 |
| abstract_inverted_index.settings—altitude | 58 |
| cited_by_percentile_year | |
| countries_distinct_count | 2 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile.value | 0.14413272 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |